The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg-Landau equation

被引:3
|
作者
Aguareles, M. [1 ]
机构
[1] Univ Girona, Dept Informat & Matemat Aplicada, Girona 17071, Spain
关键词
Spiral waves; Complex Ginzburg-Landau; Asymptotic wavenumber; CORE;
D O I
10.1016/j.physd.2014.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Response functions of spiral wave solutions of the complex Ginzburg-Landau equation
    Biktasheva, IV
    Biktashev, VN
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 28 - 34
  • [2] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2014, 63 (02)
  • [3] Amplitude spiral wave in coupled complex Ginzburg-Landau equation
    Gao Ji-Hua
    Xie Wei-Miao
    Gao Jia-Zhen
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2012, 61 (13)
  • [4] Isolated Spiral Solutions of the Ginzburg-Landau Equation
    Guzman-Velazquez, Alexandra
    Ledesma-Duran, Aldo
    Fernandez, Joaquin Delgado
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (13):
  • [5] Control spiral and multi-spiral wave in the complex Ginzburg-Landau equation
    Ma Jun
    Gao Ji-Hua
    Wang Chun-Ni
    Su Jun-Yan
    CHAOS SOLITONS & FRACTALS, 2008, 38 (02) : 521 - 530
  • [6] The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    CHAOS SOLITONS & FRACTALS, 2002, 13 (07) : 1377 - 1381
  • [7] Spiral solutions of the two-dimensional complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2001, 35 (02) : 159 - 161
  • [8] Spiral motion in a noisy complex Ginzburg-Landau equation
    Aranson, IS
    Chate, H
    Tang, LH
    PHYSICAL REVIEW LETTERS, 1998, 80 (12) : 2646 - 2649
  • [9] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [10] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365