Control spiral and multi-spiral wave in the complex Ginzburg-Landau equation

被引:25
|
作者
Ma Jun [1 ]
Gao Ji-Hua [2 ,3 ]
Wang Chun-Ni [1 ]
Su Jun-Yan [1 ]
机构
[1] Lanzhou Univ Technol, Dept Phys, Lanzhou 730050, Peoples R China
[2] Shenzhen Univ, Coll Sci, Shenzhen 518060, Peoples R China
[3] Shenzhen Key Lab Special Funct Mat, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2006.11.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this letter, scheme is proposed to suppress the spiral wave and multi-spiral waves in the complex Ginzburg-Landau equation (CGLE) under a local feedback control, which the perturbation is imposed on a small square area about 3 x 3 grids in the center of the media under periodical boundary conditions and 5 x 5 grids in the boundary of the media under no-flux conditions. Starting from random and/or perpendicular-gradient initial conditions, and the periodical boundary condition and/or no-flux boundary condition is in consideration, respectively. The numerical simulation results show that a target wave appears as the feedback began to work and the spiral and multi-spiral waves are overcome by the new generated target wave, furthermore, it confirms its effectiveness even if the spatiotemporal noise is introduced into the whole media. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 50 条
  • [1] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2014, 63 (02)
  • [2] Amplitude spiral wave in coupled complex Ginzburg-Landau equation
    Gao Ji-Hua
    Xie Wei-Miao
    Gao Jia-Zhen
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2012, 61 (13)
  • [3] The Hopf bifurcation and spiral wave solution of the complex Ginzburg-Landau equation
    Liu, SD
    Liu, SK
    Fu, ZT
    Zhao, Q
    CHAOS SOLITONS & FRACTALS, 2002, 13 (07) : 1377 - 1381
  • [4] Response functions of spiral wave solutions of the complex Ginzburg-Landau equation
    Biktasheva, IV
    Biktashev, VN
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 28 - 34
  • [5] Spiral motion in a noisy complex Ginzburg-Landau equation
    Aranson, IS
    Chate, H
    Tang, LH
    PHYSICAL REVIEW LETTERS, 1998, 80 (12) : 2646 - 2649
  • [6] Drift of Spiral Waves in Complex Ginzburg-Landau Equation
    YANG Jun-Zhong School of Science
    Communications in Theoretical Physics, 2006, 45 (04) : 647 - 652
  • [7] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [8] Drift of spiral waves in complex Ginzburg-Landau equation
    Yang, JZ
    Zhang, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 647 - 652
  • [9] Interaction of Spiral Waves in the Complex Ginzburg-Landau Equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICAL REVIEW LETTERS, 2008, 101 (22)
  • [10] The boundary-induced spiral wave drift in the complex Ginzburg-Landau equation
    Yang, Hujiang
    Yang, Junzhong
    Hu, Gang
    PHYSICS LETTERS A, 2007, 365 (03) : 204 - 209