Relating high dimensional stochastic complex systems to low-dimensional intermittency

被引:3
|
作者
Diaz-Ruelas, Alvaro [1 ,2 ]
Jensen, Henrik Jeldtoft [3 ,4 ]
Piovani, Duccio [3 ,4 ,5 ]
Robledo, Alberto [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Ctr Ciencias Complejidad, Ciudad Univ, Mexico City 04510, DF, Mexico
[3] Imperial Coll London, Ctr Complex Sci, South Kensington Campus, London SW7 2AZ, England
[4] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
[5] UCL, Ctr Adv Spatial Analysis, London W1T 4TJ, England
来源
关键词
TANGLED-NATURE; MODEL; EXTINCTION; EMERGENCE; EVOLUTION;
D O I
10.1140/epjst/e2016-60264-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We evaluate the implication and outlook of an unanticipated simplification in the macroscopic behavior of two high-dimensional sto-chastic models: the Replicator Model with Mutations and the Tangled Nature Model (TaNa) of evolutionary ecology. This simplification consists of the apparent display of low-dimensional dynamics in the non-stationary intermittent time evolution of the model on a coarse-grained scale. Evolution on this time scale spans generations of individuals, rather than single reproduction, death or mutation events. While a local one-dimensional map close to a tangent bifurcation can be derived from a mean-field version of the TaNa model, a nonlinear dynamical model consisting of successive tangent bifurcations generates time evolution patterns resembling those of the full TaNa model. To advance the interpretation of this finding, here we consider parallel results on a game-theoretic version of the TaNa model that in discrete time yields a coupled map lattice. This in turn is represented, a la Langevin, by a one-dimensional nonlinear map. Among various kinds of behaviours we obtain intermittent evolution associated with tangent bifurcations. We discuss our results.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 50 条
  • [1] Relating high dimensional stochastic complex systems to low-dimensional intermittency
    Alvaro Diaz-Ruelas
    Henrik Jeldtoft Jensen
    Duccio Piovani
    Alberto Robledo
    The European Physical Journal Special Topics, 2017, 226 : 341 - 351
  • [2] Signature of Low-Dimensional Diffusion in Complex Systems
    Malikova, N.
    Longeville, S.
    Zanotti, J. -M.
    Dubois, E.
    Marry, V.
    Turq, P.
    Ollivier, J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (26)
  • [3] Uniform stochastic web in low-dimensional Hamiltonian systems
    Pekarsky, S
    RomKedar, V
    PHYSICS LETTERS A, 1997, 225 (4-6) : 274 - 286
  • [4] Design of low-dimensional controllers for high-dimensional systems
    Bajodek, Mathieu
    Lhachemi, Hugo
    Valmorbida, Giorgio
    SYSTEMS & CONTROL LETTERS, 2025, 198
  • [5] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [6] Scaling Behavior of Complex Low-dimensional Spin Systems
    Shlyakhtich, Maria A.
    Egorina, Anastasia S.
    Drovorub, Egor, V
    Prudnikov, Vladimir V.
    Prudnikov, Pavel, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2023, 16 (06): : 830 - 837
  • [7] Low-dimensional dynamics in observables from complex and higher-dimensional systems
    Baptista, MS
    Caldas, IL
    Baptista, MS
    Baptista, CS
    Ferreira, AA
    Heller, MVAP
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 287 (1-2) : 91 - 99
  • [8] Enlargement of a low-dimensional stochastic web
    Soskin, S. M.
    Khovanov, I. A.
    Mannella, R.
    McClintock, P. V. E.
    NOISE AND FLUCTUATIONS, 2009, 1129 : 17 - +
  • [10] Phonons in low-dimensional systems
    Fritsch, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (34) : 7611 - 7626