Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance

被引:12
|
作者
Liu, Yongli [1 ]
Chen, Jingli [1 ]
Wu, Shuai [1 ]
Liu, Zhizhong [1 ]
Chao, Hao [1 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo, Henan, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 05期
关键词
D O I
10.1371/journal.pone.0197499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Parallelization of Searching and Mining Time Series Data using Dynamic Time Warping
    Shabib, Ahmed
    Narang, Anish
    Niddodi, Chaitra Prasad
    Das, Madhura
    Pradeep, Rachita
    Shenoy, Varun
    Auradkar, Prafullata
    Vignesh, T. S.
    Sitaram, Dinkar
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 343 - 348
  • [32] Time Series Clustering and Analysis of ECG Heart-beats using Dynamic Time Warping
    Annam, Jagadeeswara Rao
    Mittapalli, Sai Sudheer
    Raju, Bapi S.
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [33] TIME WARPING TECHNIQUES IN CLUSTERING TIME SERIES
    Parshutin, Serge
    Kuleshova, Galina
    MENDEL 2008, 2008, : 175 - 180
  • [34] Inaccuracies of shape averaging method using dynamic time warping for time series data
    Niennattrakul, Vit
    Ratanamahatana, Chotirat Ann
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 513 - +
  • [35] Adaptive cost dynamic time warping distance in time series analysis for classification
    Wan, Yuan
    Chen, Xiao-Li
    Shi, Ying
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 319 : 514 - 520
  • [36] A new segmented time warping distance for data mining in time series database
    Xiao, H
    Feng, XF
    Hu, YF
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1277 - 1281
  • [37] Data mining based on segmented time warping distance in time series database
    Xiao, Hui
    Hu, Yunfa
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2005, 42 (01): : 72 - 78
  • [38] Distance and Density Clustering for Time Series Data
    Ma, Ruizhe
    Angryk, Rafal A.
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 25 - 32
  • [39] On-line and dynamic time warping for time series data mining
    Hailin Li
    International Journal of Machine Learning and Cybernetics, 2015, 6 : 145 - 153
  • [40] On-line and dynamic time warping for time series data mining
    Li, Hailin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2015, 6 (01) : 145 - 153