Influence analysis for skew-normal semiparametric joint models of multivariate longitudinal and multivariate survival data

被引:9
|
作者
Tang, An-Min [1 ]
Tang, Nian-Sheng [1 ]
Zhu, Hongtu [2 ]
机构
[1] Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Peoples R China
[2] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USA
关键词
case deletion measure; joint model; local influence analysis; Monte Carlo EM algorithm; penalized spline; skew-normal distribution; LOCAL INFLUENCE; MEASUREMENT ERRORS; INCOMPLETE-DATA; MIXED MODELS; DISTRIBUTIONS; REGRESSION; SPLINES;
D O I
10.1002/sim.7211
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The normality assumption of measurement error is a widely used distribution in joint models of longitudinal and survival data, but it may lead to unreasonable or even misleading results when longitudinal data reveal skewness feature. This paper proposes a new joint model for multivariate longitudinal and multivariate survival data by incorporating a nonparametric function into the trajectory function and hazard function and assuming that measurement errors in longitudinal measurement models follow a skew-normal distribution. A Monte Carlo Expectation-Maximization (EM) algorithm together with the penalized-splines technique and the MetropolisHastings algorithm within the Gibbs sampler is developed to estimate parameters and nonparametric functions in the considered joint models. Case deletion diagnostic measures are proposed to identify the potential influential observations, and an extended local influence method is presented to assess local influence ofminor perturbations. Simulation studies and a real example from a clinical trial are presented to illustrate the proposed methodologies. Copyright (C) 2017 JohnWiley & Sons, Ltd.
引用
收藏
页码:1476 / 1490
页数:15
相关论文
共 50 条
  • [21] Outlier detection for multivariate skew-normal data: a comparative study
    Dovoedo, Y. H.
    Chakraborti, S.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (04) : 771 - 781
  • [22] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    An-Min Tang
    Nian-Sheng Tang
    Dalei Yu
    [J]. Lifetime Data Analysis, 2023, 29 : 888 - 918
  • [23] Bayesian semiparametric joint model of multivariate longitudinal and survival data with dependent censoring
    Tang, An-Min
    Tang, Nian-Sheng
    Yu, Dalei
    [J]. LIFETIME DATA ANALYSIS, 2023, 29 (04) : 888 - 918
  • [24] Analysis of Multivariate Survival Data under Semiparametric Copula Models
    He, Wenqing
    Yi, Grace Y. Y.
    Yuan, Ao
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024, 52 (02): : 380 - 413
  • [25] Multivariate measures of skewness for the skew-normal distribution
    Balakrishnan, N.
    Scarpa, Bruno
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 73 - 87
  • [26] Shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    Loschi, Rosangela H.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 91 - 101
  • [27] On the correlation structures of multivariate skew-normal distribution
    Kaarik, Ene
    Kaarik, Meelis
    Maadik, Inger-Helen
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 83 - 100
  • [28] The skew-normal distribution and related multivariate families
    Azzalini, A
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 159 - 188
  • [29] The centred parametrization for the multivariate skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (07) : 1362 - 1382
  • [30] Multivariate skew-normal distributions with applications in insurance
    Vernic, R
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2006, 38 (02): : 413 - 426