A new approach to enhance the conventional two-phase anaerobic co-digestion of food waste and sewage sludge

被引:13
|
作者
Aminzadeh, Mohammad [1 ]
Bardi, Mohammad Javad [1 ]
Aminirad, Hassan [1 ]
机构
[1] Babol Noshirvani Univ Technol, Div Environm Engn, Fac Civil Engn, Babol, Iran
关键词
Two-phase anaerobic digestion; Co-substrate; Bio-methane; Organic fertilizer; High supernatant quality; BIOGAS PRODUCTION; ACTIVATED-SLUDGE; BIOMETHANE PRODUCTION; METHANE PRODUCTION; VEGETABLE WASTE; WATER TREATMENT; TRACE-ELEMENTS; SOLID-WASTES; SINGLE-STAGE; RECOVERY;
D O I
10.1007/s40201-020-00603-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background Two-phase anaerobic co-digestion (TAcoD) is a versatile technology for the simultaneous treatment of organic materials and biogas production. However, the produced digestate and supernatant of the system contain heavy metals and organic substances that need to be treated prior to discharge or land application. Therefore, in this study, an innovative TAcoD for organic fertilizer and high supernatant quality achievement was proposed. Methods In the conventional TAcoD, mixed sewage sludge (SS) and food waste (FW) were first hydrolyzed in the acidogenic reactor, and then the hydrolyzate substrate was subjected to the methanogenic reactor (TAcoD 1). In the modified TAcoD (TAcoD 2), only FW was fed into the acidogenic reactor, and the produced hydrolyzed solid was directly converted to the organic fertilizer, while the supernatant with high soluble chemical demand (SCOD) concentration was further co-digested with SS in the methanogenic reactor. Results Although TAcoD 1 produced bio-methane yield and potential energy of 56.18% and 1.6-fold higher than TAcoD 2, the economical valorization of TAcoD 2 was 9-fold of that from TAcoD 1. The supernatant quality of TAcoD 2 was far better than TAcoD 1, since the SCOD, total nitrogen (TN), and total phosphor (TP) removal in TAcoD 2 and TAcoD 1 were 94.3%, 79.4%, 90.7%, and 68.9%, 28%, 46%, respectively. In terms of solid waste management, the modified TAcoD converted FW to organic fertilizer and achieved a solid reduction of 43.62% higher than that of conventional TAcoD. Conclusions This new modification in two-phase anaerobic co-digestion of food waste and sewage sludge provides a potentially feasible practice for simultaneous bio-methane, organic fertilizer, and high supernatant quality achievement.
引用
收藏
页码:295 / 306
页数:12
相关论文
共 50 条
  • [1] A new approach to enhance the conventional two-phase anaerobic co-digestion of food waste and sewage sludge
    Mohammad Aminzadeh
    Mohammad Javad Bardi
    Hassan Aminirad
    Journal of Environmental Health Science and Engineering, 2021, 19 : 295 - 306
  • [2] Two-phase anaerobic co-digestion of food waste and sewage sludge
    Wang, Feng
    Li, Wei-Ying
    Yi, Xue-Nong
    WATER SCIENCE AND TECHNOLOGY, 2015, 71 (01) : 100 - 106
  • [3] Anaerobic co-digestion of sewage sludge and food waste
    Prabhu, Meghanath S.
    Mutnuri, Srikanth
    WASTE MANAGEMENT & RESEARCH, 2016, 34 (04) : 307 - 315
  • [4] Two-phase mesophilic anaerobic co-digestion of food waste and sewage sludge: effect of hydraulic retention time
    Wang Guohua
    Wang Lei
    Tan Xuejun
    Wang Yixian
    Wang Feng
    MATERIAL SCIENCE AND ADVANCED TECHNOLOGIES IN MANUFACTURING, 2014, 852 : 789 - +
  • [5] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Wang, Yubo
    Wang, Chunxiao
    Wang, Yulin
    Xia, Yu
    Chen, Guanghao
    Zhang, Tong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (20) : 7755 - 7766
  • [6] Investigation on the anaerobic co-digestion of food waste with sewage sludge
    Yubo Wang
    Chunxiao Wang
    Yulin Wang
    Yu Xia
    Guanghao Chen
    Tong Zhang
    Applied Microbiology and Biotechnology, 2017, 101 : 7755 - 7766
  • [7] Anaerobic co-digestion of coffee waste and sewage sludge
    Neves, L
    Oliveira, R
    Alves, MM
    WASTE MANAGEMENT, 2006, 26 (02) : 176 - 181
  • [8] Thermophilic-mesophilic temperature phase anaerobic co-digestion compared with single phase co-digestion of sewage sludge and food waste
    Hu, Yangqing
    Shen, Ce
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Performance of Anaerobic Membrane Bioreactors for the Co-digestion of Sewage Sludge and Food Waste
    Dai J.-J.
    Niu C.-X.
    Pan Y.
    Lu X.-Q.
    Zhen G.-Y.
    Zheng C.-T.
    Zhang R.-L.
    He X.-Y.
    Huanjing Kexue/Environmental Science, 2020, 41 (08): : 3740 - 3747
  • [10] Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge
    Kim, SH
    Han, SK
    Shin, HS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (15) : 1607 - 1616