Computational protein function predictions

被引:8
|
作者
Kihara, Daisuke [1 ]
机构
[1] Purdue Univ, Dept Biol Sci Comp Sci, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.ymeth.2016.01.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
引用
收藏
页码:1 / 2
页数:2
相关论文
共 50 条
  • [41] COMPUTATIONAL MATERIALS SCIENCE Trustworthy predictions
    Kent, Paul R. C.
    NATURE, 2013, 493 (7432) : 314 - 315
  • [42] A framework for assessing confidence in computational predictions
    K. M. Hanson
    F. M. Hemez
    Experimental Techniques, 2001, 25 : 50 - 55
  • [43] CPU load predictions on the computational grid
    Zhang, Yuanyuan
    Sun, Wei
    Inoguchi, Yasushi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (01) : 40 - 47
  • [44] Computational predictions for protein sequences of COVID-19 virus via machine learning algorithms
    Afify, Heba M.
    Zanaty, Muhammad S.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (09) : 1723 - 1734
  • [45] Computational predictions for protein sequences of COVID-19 virus via machine learning algorithms
    Heba M. Afify
    Muhammad S. Zanaty
    Medical & Biological Engineering & Computing, 2021, 59 : 1723 - 1734
  • [46] Optimization of rotamers prior to template minimization improves stability predictions made by computational protein design
    Davey, James A.
    Chica, Roberto A.
    PROTEIN SCIENCE, 2015, 24 (04) : 545 - 560
  • [47] X-ray crystallographic validation of structure predictions used in computational design for protein stabilization
    Floor, Robert J.
    Wijma, Hein J.
    Jekel, Peter A.
    van Scheltinga, Anke C. Terwisscha
    Dijkstra, Bauke W.
    Janssen, Dick B.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2015, 83 (05) : 940 - 951
  • [48] Computational predictions for protein sequences of COVID-19 virus via machine learning algorithms
    Afify, Heba M.
    Zanaty, Muhammad S.
    Medical and Biological Engineering and Computing, 2021, 59 (09): : 1723 - 1734
  • [49] In silico predictions and optimization of aptamers against streptococcus agalactiae surface protein using computational docking
    Soon, Samson
    Nordin, Nor Aina
    MATERIALS TODAY-PROCEEDINGS, 2019, 16 : 2096 - 2100
  • [50] A large-scale evaluation of computational protein function prediction
    Radivojac, Predrag
    Clark, Wyatt T.
    Oron, Tal Ronnen
    Schnoes, Alexandra M.
    Wittkop, Tobias
    Sokolov, Artem
    Graim, Kiley
    Funk, Christopher
    Verspoor, Karin
    Ben-Hur, Asa
    Pandey, Gaurav
    Yunes, Jeffrey M.
    Talwalkar, Ameet S.
    Repo, Susanna
    Souza, Michael L.
    Piovesan, Damiano
    Casadio, Rita
    Wang, Zheng
    Cheng, Jianlin
    Fang, Hai
    Goughl, Julian
    Koskinen, Patrik
    Toronen, Petri
    Nokso-Koivisto, Jussi
    Holm, Liisa
    Cozzetto, Domenico
    Buchan, Daniel W. A.
    Bryson, Kevin
    Jones, David T.
    Limaye, Bhakti
    Inamdar, Harshal
    Datta, Avik
    Manjari, Sunitha K.
    Joshi, Rajendra
    Chitale, Meghana
    Kihara, Daisuke
    Lisewski, Andreas M.
    Erdin, Serkan
    Venner, Eric
    Lichtarge, Olivier
    Rentzsch, Robert
    Yang, Haixuan
    Romero, Alfonso E.
    Bhat, Prajwal
    Paccanaro, Alberto
    Hamp, Tobias
    Kassner, Rebecca
    Seemayer, Stefan
    Vicedo, Esmeralda
    Schaefer, Christian
    NATURE METHODS, 2013, 10 (03) : 221 - 227