Robust designs for Fingerprint Feature Extraction CNN with Von Neumann Neighborhood

被引:2
|
作者
Wang, Hui [1 ]
Min, LeQuan [1 ]
Liu, JinZhu [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
D O I
10.1109/CIS.2008.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. The robust designs for CNN templates are important issue for the practical applications of the CNN. The fingerprint feature extraction (FFE) CNNs are two kinds of CNNs, which are able to extract the endings and bifurcations in patterns, two important features in a fingerprint image. This paper establishes two theorems for designing the robustness templates of these two kinds of FFE CNNs respectively. These two theorems provide the template parameter inequalities to determine parameter intervals for implementing the corresponding functions. Simulation result shows the effectiveness of the proposed methodology.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [41] Enhanced Hyperspectral Image Classification Through Pretrained CNN Model for Robust Spatial Feature Extraction
    Giri, Ram Nivas
    Janghel, Rekh Ram
    Pandey, Saroj Kumar
    Govil, Himanshu
    Sinha, Anurag
    JOURNAL OF OPTICS-INDIA, 2023, 53 (3): : 2287 - 2300
  • [42] Enhanced Hyperspectral Image Classification Through Pretrained CNN Model for Robust Spatial Feature Extraction
    Giri, Ram Nivas
    Janghel, Rekh Ram
    Pandey, Saroj Kumar
    Govil, Himanshu
    Sinha, Anurag
    JOURNAL OF OPTICS-INDIA, 2024, 53 (03): : 2287 - 2300
  • [43] Neighborhood Normalization for Robust Geometric Feature Learning
    Liu, Xingtong
    Killeen, Benjamin D.
    Sinha, Ayushi
    Ishii, Masaru
    Hager, Gregory D.
    Taylor, Russell H.
    Unberath, Mathias
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13044 - 13053
  • [44] Robust neighborhood embedding for unsupervised feature selection
    Liu, Yanfang
    Ye, Dongyi
    Li, Wenbin
    Wang, Huihui
    Gao, Yang
    KNOWLEDGE-BASED SYSTEMS, 2020, 193
  • [45] Universal Computation in a Simplified Brownian Cellular Automaton with von Neumann Neighborhood
    Xu, Wen-Li
    Lee, Jia
    Chen, Hui-Hui
    Isokawa, Teijiro
    FUNDAMENTA INFORMATICAE, 2019, 165 (02) : 139 - 156
  • [46] Writer Verification Using CNN Feature Extraction
    Chu, Jun
    Shaikh, Mohammad Abuzar
    Chauhan, Mihir
    Meng, Lu
    Srihari, Sargur
    PROCEEDINGS 2018 16TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2018, : 181 - 186
  • [47] Feature extraction by maximizing the average neighborhood margin
    Wang, Fei
    Zhang, Changshui
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 1173 - +
  • [48] Orientation consistency based feature extraction for fingerprint identification
    Luo, DS
    Tao, QC
    Long, JZ
    Wu, XH
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 494 - 497
  • [49] Feature Extraction Based on Manifold Learning for Radio Fingerprint
    Pu, Qiaolin
    Tang, Tianshu
    Ng, Joseph Kee-Yin
    Zhang, Fawen
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [50] Using relative von Neumann and Shannon entropies for feature fusion
    Peng, Weimin
    Deng, Huifang
    Chen, Aihong
    Chen, Jing
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (11) : 2189 - 2199