Robust designs for Fingerprint Feature Extraction CNN with Von Neumann Neighborhood

被引:2
|
作者
Wang, Hui [1 ]
Min, LeQuan [1 ]
Liu, JinZhu [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing 100083, Peoples R China
关键词
D O I
10.1109/CIS.2008.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The cellular neural/nonlinear network (CNN) is a powerful tool for image and video signal processing, robotic and biological visions. The robust designs for CNN templates are important issue for the practical applications of the CNN. The fingerprint feature extraction (FFE) CNNs are two kinds of CNNs, which are able to extract the endings and bifurcations in patterns, two important features in a fingerprint image. This paper establishes two theorems for designing the robustness templates of these two kinds of FFE CNNs respectively. These two theorems provide the template parameter inequalities to determine parameter intervals for implementing the corresponding functions. Simulation result shows the effectiveness of the proposed methodology.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 50 条
  • [1] Fingerprint feature extraction via CNN with Von Neumann neighborhood
    Lou, Yijun
    Chen, Fangyue
    Guan, Junbiao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 4145 - 4151
  • [2] Robust Designs of Selected Objects Extraction CNN
    Chen, Fangyue
    Chen, Lin
    Jin, Weifeng
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1184 - +
  • [3] Fast robust fingerprint feature extraction and classification
    Nyongesa, HO
    Al-Khayatt, S
    Mohamed, SM
    Mahmoud, M
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2004, 40 (01) : 103 - 112
  • [4] Fast Robust Fingerprint Feature Extraction and Classification
    H. O. Nyongesa
    S. Al-Khayatt
    S. M. Mohamed
    M. Mahmoud
    Journal of Intelligent and Robotic Systems, 2004, 40 : 103 - 112
  • [5] Fingerprint Feature Extraction Using CNN with Multiple Attention Mechanisms
    Sasuga, Nagisa
    Ito, Koichi
    Aoki, Takafumi
    2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2022,
  • [6] Towards Robust Localization Deep Feature Extraction by CNN
    Carlbaum, Erik
    Mansouri, Sina Sharif
    Kanellakis, Christoforos
    Koval, Anton
    Nikolakopoulos, George
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 807 - 812
  • [7] Packard Snowflakes on the von Neumann Neighborhood
    Brummitt, Charles D.
    Delventhal, Hannah
    Retzlaff, Michael
    JOURNAL OF CELLULAR AUTOMATA, 2008, 3 (01) : 57 - 79
  • [8] Speeded-Up Robust Feature Extraction and Matching for Fingerprint Recognition
    Hany, Umma
    Akter, Lutfa
    2ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION COMMUNICATION TECHNOLOGY (ICEEICT 2015), 2015,
  • [9] FEATURE EXTRACTION FOR FINGERPRINT CLASSIFICATION
    RAO, TCM
    PATTERN RECOGNITION, 1976, 8 (03) : 181 - 192
  • [10] Robust designs for shadow projection CNN
    Li, Weidong
    Min, Lequan
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1658 - +