Transient analysis of triplet exciton dynamics in amorphous organic semiconductor thin films

被引:65
|
作者
Giebink, N. C.
Sun, Y.
Forrest, S. R. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Princeton Univ, Dept Elect Engn, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[3] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
exciton; electrophosphorescence; organic light emitting device; triplet; diffusion;
D O I
10.1016/j.orgel.2006.04.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study triplet exciton diffusion in the archetype organic material 4,4'-bis(N-carbazolyl)biphenyl (CBP) commonly used as a conductive host in the emissive zone of organic light emitting devices. Using time-resolved spectral decay ensuing from the diffusion of an initially localized triplet population to a spatially separated phosphor doped region, we model the delayed fluorescence and phosphorescence decays based on non-dispersive triplet transport. Fits to the model yield a diffusion coefficient of D = (1.4 +/- 0.3) x 10(-8) cm(2)/s, and a triplet-triplet bimolecular quenching rate constant of K-TT = (1.6 +/- 0.4) x 10(-14) cm(3)/s. The results are extended by doping a wide energy-gap molecule into CBP that serves to frustrate triplet transport, lowering both the diffusion coefficient and annihilation rate. These results are used to model a recently demonstrated white organic light emitting device that depends on triplet diffusion in CBP to excite spatially separate fluorescent and phosphorescent doped regions of the emissive layer. We determine the extent to which diffusion contributes to light emission in this structure, and predict its performance based on ideal lumophores with unity quantum yield. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [31] Holographic recording in amorphous chalcogenide semiconductor thin films
    Teteris, J
    ADVANCED OPTICAL DEVICES, TECHNOLOGIES, AND MEDICAL APPLICATIONS, 2002, 5123 : 107 - 116
  • [32] Tuning Exciton Delocalization in Organic Crystalline Thin Films
    Hua, Kim-Ngan
    Manning, Lane
    Rawat, Naveen
    Ainsworth, Victoria S.
    Liang, Libin
    Furis, Madalina
    LIGHT MANIPULATING ORGANIC MATERIALS AND DEVICES III, 2016, 9939
  • [33] Holographic recording in amorphous chalcogenide semiconductor thin films
    Teteris, J
    XIIITH INTERNATIONAL SYMPOSIUM ON NON-OXIDE GLASSES AND NEW OPTICAL GLASSES PTS 1 AND 2, 2002, : 621 - 628
  • [34] STABILIZATION OF AMORPHOUS SELENIUM SEMICONDUCTOR THIN-FILMS
    FLEURY, G
    VIGER, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1979, 288 (01): : 25 - 28
  • [35] Holographic recording in amorphous chalcogenide semiconductor thin films
    Teteris, J
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2002, 4 (03): : 687 - 697
  • [36] Origins of growth stresses in amorphous semiconductor thin films
    Floro, JA
    Kotula, PG
    Seel, SC
    Srolovitz, DJ
    PHYSICAL REVIEW LETTERS, 2003, 91 (09)
  • [37] SECONDARY ELECTRON EMISSION OF AMORPHOUS SEMICONDUCTOR THIN FILMS
    CHEN, ACM
    NORTON, JF
    WANG, JM
    APPLIED PHYSICS LETTERS, 1971, 18 (10) : 443 - &
  • [38] Holographic recording in amorphous chalcogenide semiconductor thin films
    Teteris, J
    Reinfelde, M
    HOLOGRAPHY 2000, 2000, 4149 : 81 - 90
  • [39] Holographic recording in amorphous chalcogenide semiconductor thin films
    Teteris, J
    Reinfelde, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2003, 326 : 494 - 499
  • [40] DIELECTRIC PROPERTIES OF AMORPHOUS SEMICONDUCTOR CHALCOGENIDE THIN FILMS
    SHAW, RF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (03): : 245 - &