Selective growth of 4H-SIC on 4H-SiC substrates using a high temperature mask

被引:10
|
作者
Li, C [1 ]
Seiler, J [1 ]
Bhat, I [1 ]
Chow, TP [1 ]
机构
[1] Rensselaer Polytech Inst, ECSE Dept, Troy, NY 12180 USA
关键词
selective growth; lateral epitaxial overgrowth; LEO; silicon carbide; CVD;
D O I
10.4028/www.scientific.net/MSF.457-460.185
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Selective growth of SiC on SiC substrate was demonstrated in a chemical vapor deposition (CVD) reactor using a new high temperature mask. Bulk 4H-SiC with 8degrees miscut (0001) Si-face wafers were coated with the high temperature mask and patterned using standard photolithography. The pattern consisted of window stripes as spokes of a wheel. Epitaxial growth of SiC was carried out in a conventional, horizontal, rf-heated cold wall reactor at temperatures in the range 1450-1550degreesC. When the window stripes are oriented along <1120> miscut direction, the growth on the exposed area followed the substrate orientation, and the top surface was smooth and specular. However, when the window stripes are aligned along <1100> direction (perpendicular to the miscut direction), the growth on the window stripes developed (0001) facets on the surface. Epitaxial lateral overgrowth over the mask was also studied by cross sectional scanning electron microscopy (SEM). It was found that the extent of lateral growth varied with the stripe orientation. Effects of growth temperature as well as silane flows on the selective growth were also studied. Higher temperature or lower silane flow results in the etching of exposed SiC instead of growth. The etched surfaces developed orientation dependent facets similar to the growth. Importantly, the mask could be easily removed after the growth.
引用
收藏
页码:185 / 188
页数:4
相关论文
共 50 条
  • [1] Selective embedded growth of 4H-SiC trenches in 4H-SiC(0001) substrates using carbon mask
    Chen, Y
    Kimoto, T
    Takeuchi, Y
    Malhan, RK
    Matsunami, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (7A): : 4909 - 4910
  • [2] 4H-SiC high temperature spectrometers
    Kalinina, E.
    Strokan, N.
    Ivanov, A. M.
    Sadohin, A.
    Azarov, A.
    Kossov, V.
    Yafaev, R.
    Lashaev, S.
    SILICON CARBIDE AND RELATED MATERIALS 2006, 2007, 556-557 : 941 - +
  • [3] CVD epitaxial growth of 4H-SiC on porous SiC substrates
    Shishkin, Y.
    Ke, Yue
    Yan, Fei
    Devaty, R. P.
    Choyke, W. J.
    Saddow, S. E.
    SILICON CARBIDE AND RELATED MATERIALS 2005, PTS 1 AND 2, 2006, 527-529 : 255 - 258
  • [4] Growth of SiC Nanowires on Different Planes of 4H-SiC Substrates
    Thirumalai, Rooban Venkatesh K. G.
    Krishnan, Bharat
    Levin, Igor
    Davydov, Albert V.
    Sundaresan, Siddarth
    Merrett, J. Neil
    Koshka, Yaroslav
    SILICON CARBIDE AND RELATED MATERIALS 2011, PTS 1 AND 2, 2012, 717-720 : 1279 - +
  • [5] Investigations of 3C-SiC inclusions in 4H-SiC epilayers on 4H-SiC single crystal substrates
    Weimin Si
    Michael Dudley
    Hua Shuang Kong
    Joe Sumakeris
    Calvin Carter
    Journal of Electronic Materials, 1997, 26 : 151 - 159
  • [6] Studies on selective growth and in-situ etching of 4H-SiC using a TaC mask
    Li, Canhua
    Bhat, Ishwara
    Chow, T. Paul
    SILICON CARBIDE AND RELATED MATERIALS 2005, PTS 1 AND 2, 2006, 527-529 : 259 - +
  • [7] ICP etching of 4H-SiC substrates
    Biscarrat, Jerome
    Michaud, Jean-Francois
    Collard, Emmanuel
    Alquier, Daniel
    SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 : 825 - +
  • [8] Oxidation of porous 4H-SiC substrates
    Soloviev, S
    Das, T
    Sudarshan, TS
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 1113 - 1116
  • [9] Growth of SiC layers on off-axis 4H-SiC substrates
    Pecz, B
    Toth, L
    Radnoczi, G
    Hallin, C
    Janzen, E
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1997, 1997, (157): : 319 - 322
  • [10] Investigations of 3C-SiC inclusions in 4H-SiC epilayers on 4H-SiC single crystal substrates
    Si, WM
    Dudley, M
    Kong, HS
    Sumakeris, J
    Carter, C
    JOURNAL OF ELECTRONIC MATERIALS, 1997, 26 (03) : 151 - 159