Numerical simulation of Faraday waves

被引:72
|
作者
Perinet, Nicolas [1 ,2 ]
Juric, Damir [3 ]
Tuckerman, Laurette S. [1 ,2 ]
机构
[1] Univ Paris 06, Phys & Mecan Milieux Heterogenes Lab, Ecole Super Phys & Chim Ind Ville Paris, CNRS,UMR 7636, F-75231 Paris 5, France
[2] Univ Paris 07, Phys & Mecan Milieux Heterogenes Lab, Ecole Super Phys & Chim Ind Ville Paris, CNRS,UMR 7636, F-75231 Paris 5, France
[3] CNRS, LIMSI, UPR 3251, F-91403 Orsay, France
基金
日本学术振兴会; 以色列科学基金会; 澳大利亚研究理事会; 中国国家自然科学基金; 欧盟地平线“2020”; 加拿大自然科学与工程研究理事会; 美国国家科学基金会; 欧洲研究理事会; 巴西圣保罗研究基金会; 英国科学技术设施理事会; 加拿大创新基金会; 奥地利科学基金会;
关键词
LARGE ASPECT RATIO; SURFACE-WAVES; PATTERN-FORMATION; VISCOUS FLUIDS; INSTABILITY; FLOWS; INTERFACE; SCHEMES; STATES; DEPTH;
D O I
10.1017/S0022112009007551
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier-Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk et al. (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum of both square and hexagonal patterns within experimental uncertainty. We present the first calculations of a three-dimensional velocity field arising from the Faraday instability for a hexagonal pattern as it varies over its oscillation period.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [21] Numerical Oscillatory on the Simulation of Thermoacoustic Waves
    Liu Jiping
    Zhou Zhijie
    Chong Daotong
    Yan Junjie
    HEAT TRANSFER-ASIAN RESEARCH, 2007, 36 (05): : 265 - 275
  • [22] Numerical simulation of explosive shock waves
    Li, Hao
    Ning, Jian-guo
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 964 - 966
  • [23] NUMERICAL-SIMULATION OF ELECTROTHERMAL WAVES
    UNCLES, RJ
    ENERGY CONVERSION, 1975, 14 (3-4): : 103 - 110
  • [24] Numerical Simulation of Waves in Periodic Structures
    Ehrhardt, Matthias
    Han, Houde
    Zheng, Chunxiong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (05) : 849 - 870
  • [25] Waves in materials with microstructure: numerical simulation
    Berezovski, Mihhail
    Berezovski, Arkadi
    Engelbrecht, Jueri
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2010, 59 (02) : 99 - 107
  • [26] Numerical oscillatory on the simulation of thermoacoustic waves
    Liu, Ji-Ping
    Zhou, Zhi-Jie
    Chong, Dao-Tong
    Yan, Jun-Jie
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2006, 27 (04): : 658 - 660
  • [27] Numerical simulation of explosion seismic waves
    Guo, Sheng-Bing
    Pan, Yue-Feng
    Gao, Pei-Zheng
    Wang, Ming-Yang
    Qian, Qi-Hu
    Baozha Yu Chongji/Explosion and Shock Waves, 2005, 25 (04): : 335 - 340
  • [28] NUMERICAL SIMULATION OF OBLIQUE SHOCK WAVES
    BISKAMP, D
    WELTER, H
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (10): : 1193 - &
  • [29] ELECTROMECHANICAL WAVES IN CERAMICS——NUMERICAL SIMULATION
    Gérard A.MAUGIN
    Bernard COLLET
    Jo■l POUGET
    Applied Mathematics and Mechanics(English Edition), 1985, (12) : 1129 - 1139
  • [30] Traveling Faraday waves
    Guan, Jian H.
    Magoon, Connor W.
    Durey, Matthew
    Camassa, Roberto
    Saenz, Pedro J.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (11)