Local well-posedness of the vacuum free boundary of 3-D compressible Navier-Stokes equations

被引:8
|
作者
Gui, Guilong [1 ]
Wang, Chao [2 ]
Wang, Yuxi [2 ]
机构
[1] Northwest Univ, Sch Math, Ctr Nonlinear Studies, Xian 710069, Shaanxi, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
35K65; 35R35; 76N10; GLOBAL WEAK SOLUTIONS; EULER EQUATIONS; SMOOTH SOLUTIONS; EXISTENCE; BEHAVIOR; VISCOSITY; CONVERGENCE; SYMMETRY; DENSITY; FLUIDS;
D O I
10.1007/s00526-019-1608-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the 3-D motion of viscous gas with the vacuum free boundary. We use the conormal derivative to establish local well-posedness of this system. One of important advantages in the paper is that we do not need any strong compatibility conditions on the initial data in terms of the acceleration.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Local well-posedness of the vacuum free boundary of 3-D compressible Navier–Stokes equations
    Guilong Gui
    Chao Wang
    Yuxi Wang
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [2] LOCAL WELL-POSEDNESS OF ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM
    Gong, Huajun
    Li, Jinkai
    Liu, Xian-Gao
    Zhang, Xiaotao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1891 - 1909
  • [3] Local well-posedness to the vacuum free boundary problem of full compressible Navier-Stokes equations in R3
    Chen, Yuhui
    Huang, Jingchi
    Wang, Chao
    Wei, Zhengzhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 300 : 734 - 785
  • [4] Local well-posedness of the compressible Navier-Stokes-Smoluchowski equations with vacuum
    Yang, Xiuhui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)
  • [5] On the global well-posedness for the compressible Navier-Stokes equations with slip boundary condition
    Shibata, Yoshihiro
    Murata, Miho
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5761 - 5795
  • [6] LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY
    叶嵎林
    窦昌胜
    酒全森
    Acta Mathematica Scientia, 2014, 34 (03) : 851 - 871
  • [7] LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY
    Ye, Yulin
    Dou, Changsheng
    Jiu, Quansen
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 851 - 871
  • [8] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [9] GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    李金禄
    殷朝阳
    翟小平
    Acta Mathematica Scientia, 2022, 42 (05) : 2131 - 2148
  • [10] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148