LOCAL WELL-POSEDNESS TO THE CAUCHY PROBLEM OF THE 3-D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY

被引:6
|
作者
Ye, Yulin [1 ]
Dou, Changsheng [2 ,3 ]
Jiu, Quansen [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[3] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
基金
中国博士后科学基金;
关键词
Existence and uniqueness; classical solution; compressible Navier-Stokes equations; density-dependent viscosity; vacuum; BOUNDARY-VALUE-PROBLEMS; GLOBAL WEAK SOLUTIONS; SHALLOW-WATER; SMOOTH SOLUTIONS; VACUUM STATES; EXISTENCE; 1D; FLUID; FLOWS; CONVERGENCE;
D O I
10.1016/S0252-9602(14)60055-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove the local existence and uniqueness of the classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with large initial data and vacuum, if the shear viscosity mu is a positive constant and the bulk viscosity lambda(p) = p(beta) with beta >= 0. Note that the initial data can be arbitrarily large to contain vacuum states.
引用
下载
收藏
页码:851 / 871
页数:21
相关论文
共 50 条