Non-Abelian Berry connections for quantum computation

被引:251
|
作者
Pachos, J
Zanardi, P
Rasetti, M
机构
[1] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[2] Politecn Torino, Ist Nazl Fis Mat, Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevA.61.010305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the holonomic approach to quantum computation, information is encoded in a degenerate eigenspace of a parametric family of Hamiltonians acid manipulated by the associated holonomic gates. These are realized in terms of the non-Abelian Berry connection and are obtained by driving the control parameters along adiabatic loops. We show how it is possible for a specific model to explicitly determine the loops generating any desired logical gate, thus producing a universal set of unitary transformations. In a multipartite system unitary transformations can be implemented efficiently by sequences of local holonomic gates. Moreover, a conceptual scheme for obtaining the required Hamiltonian family, based on frequently repeated pulses, is discussed, together with a possible process whereby the initial state can be prepared and the final one can be measured.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Non-Abelian Statistics in a Quantum Antiferromagnet
    Greiter, Martin
    Thomale, Ronny
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [32] Non-abelian Quantum Statistics on Graphs
    Tomasz Maciążek
    Adam Sawicki
    [J]. Communications in Mathematical Physics, 2019, 371 : 921 - 973
  • [33] Non-Abelian Berry phase for open quantum systems: Topological protection versus geometric dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    [J]. PHYSICAL REVIEW B, 2019, 100 (08)
  • [34] EXAMPLES OF NON-ABELIAN CONNECTIONS INDUCED IN ADIABATIC PROCESSES
    ARODZ, H
    BABIUCH, A
    [J]. ACTA PHYSICA POLONICA B, 1989, 20 (07): : 579 - 590
  • [35] VANISHING OF NON-ABELIAN BERRY PHASES IN HEAVY SOLITONIC BARYONS
    LEE, HK
    RHO, M
    [J]. PHYSICAL REVIEW D, 1993, 48 (05): : 2329 - 2336
  • [36] Non-Abelian statistics as a Berry phase in exactly solvable models
    Lahtinen, Ville
    Pachos, Jiannis K.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [37] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [38] Non-Abelian stokes theorem and computation of Wilson loop
    Chen, Y
    He, B
    Wu, JM
    [J]. MODERN PHYSICS LETTERS A, 2000, 15 (17) : 1127 - 1135
  • [39] NON-ABELIAN QUANTUM KINEMATIC FOUNDATIONS OF QUANTUM DYNAMICS
    KRAUSE, J
    [J]. FUNDAMENTAL PROBLEMS IN QUANTUM THEORY: A CONFERENCE HELD IN HONOR OF PROFESSOR JOHN A. WHEELER, 1995, 755 : 871 - 872
  • [40] Anatomy of Abelian and Non-Abelian Fractional Quantum Hall States
    Bernevig, B. Andrei
    Regnault, N.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (20)