Existence of periodic solutions for a class of second order Hamiltonian systems

被引:3
|
作者
Wang, Da-Bin [1 ]
Yang, Kuo [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
来源
关键词
periodic solutions; second order Hamiltonian systems; least action principle; NONLINEARITY; MULTIPLICITY;
D O I
10.1186/s13661-015-0460-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the least action principle and the minimax methods, the existence of periodic solutions for a class of second order Hamiltonian systems is considered. The results obtained in this paper extend some previous results.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Periodic solutions for a class of new superquadratic second order Hamiltonian systems
    Tang, Chun-Lei
    Wu, Xing-Ping
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 34 : 65 - 71
  • [22] Existence solutions for second order Hamiltonian systems
    Li, Lin
    Schechter, Martin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 : 283 - 296
  • [23] Existence and multiplicity of periodic solutions for some second-order Hamiltonian systems
    Suo, Hongmin
    Di, Lan
    An, Yucheng
    Chu, Changmu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] Existence and multiplicity of periodic solutions for some second-order Hamiltonian systems
    Hongmin Suo
    Lan Di
    Yucheng An
    Changmu Chu
    [J]. Journal of Inequalities and Applications, 2014
  • [25] EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS
    Gu, Hua
    An, Tianqing
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [26] Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems
    Wang, Da-Bin
    Xie, Hua-Fei
    Guan, Wen
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [27] Existence of nontrivial rotating periodic solutions for second-order Hamiltonian systems
    Ye, Tiefeng
    Liu, Wenbin
    Shen, Tengfei
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 142
  • [28] The existence of homoclinic solutions for second-order Hamiltonian systems with periodic potentials
    Yang, Ming-Hai
    Han, Zhi-Qing
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2742 - 2751
  • [29] Existence and Multiplicity of Periodic Solutions for Second Order Hamiltonian Systems Depending on a Parameter
    Bonanno, Gabriele
    Livrea, Roberto
    [J]. JOURNAL OF CONVEX ANALYSIS, 2013, 20 (04) : 1075 - 1094
  • [30] Existence of periodic solutions for nonautonomous second-order discrete Hamiltonian systems
    Da-Bin Wang
    Hua-Fei Xie
    Wen Guan
    [J]. Advances in Difference Equations, 2016