Evaluation of MnOx, Mn2O3, and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water

被引:495
|
作者
Ramirez, Alejandra [1 ]
Hillebrand, Philipp [1 ]
Stellmach, Diana [1 ]
May, Matthias M. [1 ]
Bogdanoff, Peter [1 ]
Fiechter, Sebastian [1 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie, Inst Solar Fuels, D-14109 Berlin, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2014年 / 118卷 / 26期
关键词
RAY-ABSORPTION SPECTROSCOPY; MANGANESE OXIDE ELECTRODES; ANODIC CHARACTERISTICS; METAL-OXIDES; THIN-FILMS; OXIDATION; CATALYST; XPS; ELECTROCATALYSTS; HAUSMANNITE;
D O I
10.1021/jp500939d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different manganese oxide phases were prepared as thin films to elucidate their structure-function relationship with respect to oxygen evolution in the process of water splitting. For this purpose, amorphous MnOx films anodically deposited on F:SnO2/glass and annealed at different temperatures (to improve film adherence and crystallinity) were tested in neutral and alkaline electrolytes. Differential electrochemical mass spectroscopy showed that the anodic current correlated well with the onset of the expected oxygen evolution, where in 1 M KOH, the anodic current of crystalline alpha-Mn2O3 films was determined to onset at an overpotential (eta) of 170 mV(RHE) (at J = 0.1 mA/cm(2)) with current densities of ca. 20 mA/cm(2) at eta = 570 mVRHE. Amorphous MnOx films heated at 573 K (MnOx-573 K) were found to improve their adherence to F:SnO2/glass substrate after heat treatment with a slight crystallization detected by Raman spectroscopy. The onset of water oxidation of MnOx-573 K films was identified at eta = 230 mV(RHE) (at J = 0.1 mA/cm(2)) with current densities of ca. 20 mA/cm(2) at eta = 570 mV(RHE) (1 M KOH). The least active of the investigated manganese oxides was Mn3O4 with an onset at eta = 290 mVRHE (at J = 0.1 mA/cm2) and current densities of ca. 10 niA/cm(2) at eta = 570 mV(RHE) (1 M KOH). In neutral solution (1 M KPi, a similar tendency was observed with the lowest overpotential found for alpha-Mn2O3 followed by MnOx-573 K and Mn3O4. X-ray photoelectron spectroscopy revealed that after electrochemical treatment, the surfaces of the manganese oxide electrodes exhibited oxidation of Mn II and Mn III toward Mn IV under oxygen evolving conditions. In the case of alpha-Mn2O3 and MnOx-573 K, the manganese oxidation was found to be reversible in KPi when switching the potential above and below the oxygen evolution reaction (OER) threshold potential. Furthermore, scanning electron microscopy (SEM) images displayed the presence of an amorphous phase on top of all manganese oxide films here tested after oxygen evolution. The results indicate that structural changes played an important role in the catalytic activity of the manganese oxides, in addition to oxidation states, a large variety of Mn-O bond lengths and a high concentration of oxygen point defects. Thus, compared to Mn3O4, crystalline alpha-Mn2O3 and MnOx-573 K are the most efficient catalyst for water oxidation in the manganese oxygen system.
引用
收藏
页码:14073 / 14081
页数:9
相关论文
共 50 条
  • [21] General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-ion Battery Anodes
    Gu, Xin
    Yue, Jie
    Li, Liangjun
    Xue, Haitao
    Yang, Jian
    Zhao, Xuebo
    ELECTROCHIMICA ACTA, 2015, 184 : 250 - 256
  • [22] Controlled Synthesis of Highly Crystallized Mesoporous Mn2O3 and Mn3O4 by Using Anionic Surfactants
    Jothi, Palani Raja
    Pramanik, Malay
    Li, Cuiling
    Kannan, Shanthi
    Malgras, Victor
    Salunkhe, Rahul R.
    Yamauchi, Yusuke
    CHEMISTRY-AN ASIAN JOURNAL, 2016, 11 (05) : 667 - 673
  • [23] Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate
    Jankovsky, Ondrej
    Sedmidubsky, David
    Simek, Petr
    Sofer, Zdenek
    Ulbrich, Pavel
    Bartunek, Vilem
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 595 - 601
  • [24] Solventless synthesis of bixbyite (Mn2O3) and hausmannite (Mn3O4) nanoparticles for ammonia nitrogen removal
    Malima, Nyemaga Masanje
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [25] Facile synthesis of Mn2O3/Mn3O4 composites with superior zinc ion storage performance
    Yao, Jinhuan
    Liu, Ying
    Li, Yanwei
    Jiang, Jiqiong
    Zhu, Qing
    MATERIALS RESEARCH BULLETIN, 2023, 165
  • [26] ELECTRON PARAMAGNETIC RESONANCE METHOD FOR STUDYING VALENCE MANGANESE STATE IN MN2O3 AND MN3O4
    ARIYA, SM
    ENDEN, NM
    ZHURNAL STRUKTURNOI KHIMII, 1970, 11 (04): : 611 - &
  • [27] HYPERFINE INTERACTION OF CD-111 IMPURITIES IN MN2O3, MN3O4 AND BETA-FE2O3
    WIARDA, D
    WENZEL, T
    UHRMACHER, M
    LIEB, KP
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1992, 53 (09) : 1199 - 1209
  • [28] Hydrothermal synthesis of γ-MnOOH nanorods and their conversion to MnO2, Mn2O3, and Mn3O4 nanorods
    Lan, Leilei
    Li, Quanjun
    Gu, Guangrui
    Zhang, Huafang
    Liu, Bingbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 644 : 430 - 437
  • [29] Sketchy synthesis of Mn3O4, Mn3O4/AC and Mn3O4/CNT composites for application of/in energy cache
    Madhuri, Sakaray
    Chakra, Chidurala Shilpa
    Sadhana, Katlakunta
    Divya, Velpula
    MATERIALS TODAY-PROCEEDINGS, 2022, 65 : 2812 - 2818
  • [30] Oxygen evolution reaction on Mn2O3 electrodes supported on stainless steel.
    Varela, H
    Câmara, GA
    Scatena, H
    Gonzalez, ER
    QUIMICA NOVA, 2000, 23 (06): : 721 - 726