Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing

被引:71
|
作者
Han, Xiaoping [1 ,2 ,8 ]
Chen, Haide [1 ,3 ,5 ]
Huang, Daosheng [1 ,8 ]
Chen, Huidong [4 ,6 ]
Fei, Lijiang [1 ,8 ]
Cheng, Chen [7 ]
Huang, He [2 ,8 ]
Yuan, Guo-Cheng [4 ]
Guo, Guoji [1 ,2 ,3 ,8 ]
机构
[1] Zhejiang Univ, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Med, Inst Hematol, Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China
[3] Dr Li Dak Sum & Yip Yio Chin Ctr Stem Cell & Rege, Zhejiang Prov Key Lab Tissue Engn & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[4] Harvard Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Zhejiang Univ, Coll Anim Sci, Hangzhou 310058, Zhejiang, Peoples R China
[6] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[7] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China
[8] Zhejiang Univ, Stem Cell Inst, Hangzhou 310058, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
Single-cell RNA-sequencing; Primed human pluripotent stem cell; Embryoid body; Naive human pluripotent stem cell; MESSENGER-RNA; SIGNALING PATHWAYS; CULTURE-CONDITIONS; STROMAL CELLS; HUMAN ES; GENE; EXPRESSION; NAIVE; MUSCLE; MOUSE;
D O I
10.1186/s13059-018-1426-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. Results: We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naive-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naive-like H9. Functionally, naive-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Conclusions: Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus
    Morgenstern, Netali Ben-Baruch
    Rochman, Mark
    Kotliar, Michael
    Dunn, Julia L. M.
    Mack, Lydia
    Besse, John
    Natale, Mia A.
    Klingler, Andrea M.
    Felton, Jennifer M.
    Caldwell, Julie M.
    Barski, Artem
    Rothenberg, Marc E.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 154 (04) : 974 - 987
  • [22] Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing
    Moon, Hui-Sung
    Je, Kwanghwi
    Min, Jae-Woong
    Park, Donghyun
    Han, Kyung-Yeon
    Shin, Seung-Ho
    Park, Woong-Yang
    Yoo, Chang Eun
    Kim, Shin-Hyun
    LAB ON A CHIP, 2018, 18 (05) : 775 - 784
  • [23] Quantitative assessment of single-cell RNA-sequencing methods
    Angela R Wu
    Norma F Neff
    Tomer Kalisky
    Piero Dalerba
    Barbara Treutlein
    Michael E Rothenberg
    Francis M Mburu
    Gary L Mantalas
    Sopheak Sim
    Michael F Clarke
    Stephen R Quake
    Nature Methods, 2014, 11 : 41 - 46
  • [24] Power analysis of single-cell RNA-sequencing experiments
    Svensson, Valentine
    Natarajan, Kedar Nath
    Ly, Lam-Ha
    Miragaia, Ricardo J.
    Labalette, Charlotte
    Macaulay, Iain C.
    Cvejic, Ana
    Teichmann, Sarah A.
    NATURE METHODS, 2017, 14 (04) : 381 - +
  • [25] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [26] Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods
    Schmid, Christina
    Wohnhaas, Christian T.
    Hildebrandt, Tobias
    Baum, Patrick
    Rast, Georg
    JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2020, 106
  • [27] Power analysis of single-cell RNA-sequencing experiments
    Valentine Svensson
    Kedar Nath Natarajan
    Lam-Ha Ly
    Ricardo J Miragaia
    Charlotte Labalette
    Iain C Macaulay
    Ana Cvejic
    Sarah A Teichmann
    Nature Methods, 2017, 14 : 381 - 387
  • [28] Defining mammary basal cell transcriptional states using single-cell RNA-sequencing
    Gutierrez, Guadalupe
    Sun, Peng
    Han, Yingying
    Dai, Xing
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Resolving T helper cell fate decisions using single-cell RNA-sequencing
    Loennberg, Tapio
    James, Kylie
    Svensson, Valentine
    Fernandez-Ruiz, Daniel
    Sebina, Ismail
    Montandon, Ruddy
    Soon, Megan
    Stubbington, Michael
    Souza-Fonseca-Guimaraes, Fernando
    Heath, William
    Billker, Oliver
    Haque, Ashraful
    Teichmann, Sarah
    SCANDINAVIAN JOURNAL OF IMMUNOLOGY, 2016, 83 (05) : 377 - 377
  • [30] Defining mammary basal cell transcriptional states using single-cell RNA-sequencing
    Guadalupe Gutierrez
    Peng Sun
    Yingying Han
    Xing Dai
    Scientific Reports, 12