Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing

被引:71
|
作者
Han, Xiaoping [1 ,2 ,8 ]
Chen, Haide [1 ,3 ,5 ]
Huang, Daosheng [1 ,8 ]
Chen, Huidong [4 ,6 ]
Fei, Lijiang [1 ,8 ]
Cheng, Chen [7 ]
Huang, He [2 ,8 ]
Yuan, Guo-Cheng [4 ]
Guo, Guoji [1 ,2 ,3 ,8 ]
机构
[1] Zhejiang Univ, Sch Med, Ctr Stem Cell & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Med, Inst Hematol, Affiliated Hosp 1, Hangzhou 310003, Zhejiang, Peoples R China
[3] Dr Li Dak Sum & Yip Yio Chin Ctr Stem Cell & Rege, Zhejiang Prov Key Lab Tissue Engn & Regenerat Med, Hangzhou 310058, Zhejiang, Peoples R China
[4] Harvard Chan Sch Publ Hlth, Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Zhejiang Univ, Coll Anim Sci, Hangzhou 310058, Zhejiang, Peoples R China
[6] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[7] Zhejiang Univ, Coll Life Sci, Hangzhou 310058, Zhejiang, Peoples R China
[8] Zhejiang Univ, Stem Cell Inst, Hangzhou 310058, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
Single-cell RNA-sequencing; Primed human pluripotent stem cell; Embryoid body; Naive human pluripotent stem cell; MESSENGER-RNA; SIGNALING PATHWAYS; CULTURE-CONDITIONS; STROMAL CELLS; HUMAN ES; GENE; EXPRESSION; NAIVE; MUSCLE; MOUSE;
D O I
10.1186/s13059-018-1426-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Human pluripotent stem cells (hPSCs) provide powerful models for studying cellular differentiations and unlimited sources of cells for regenerative medicine. However, a comprehensive single-cell level differentiation roadmap for hPSCs has not been achieved. Results: We use high throughput single-cell RNA-sequencing (scRNA-seq), based on optimized microfluidic circuits, to profile early differentiation lineages in the human embryoid body system. We present a cellular-state landscape for hPSC early differentiation that covers multiple cellular lineages, including neural, muscle, endothelial, stromal, liver, and epithelial cells. Through pseudotime analysis, we construct the developmental trajectories of these progenitor cells and reveal the gene expression dynamics in the process of cell differentiation. We further reprogram primed H9 cells into naive-like H9 cells to study the cellular-state transition process. We find that genes related to hemogenic endothelium development are enriched in naive-like H9. Functionally, naive-like H9 show higher potency for differentiation into hematopoietic lineages than primed cells. Conclusions: Our single-cell analysis reveals the cellular-state landscape of hPSC early differentiation, offering new insights that can be harnessed for optimization of differentiation protocols.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing
    Xiaoping Han
    Haide Chen
    Daosheng Huang
    Huidong Chen
    Lijiang Fei
    Chen Cheng
    He Huang
    Guo-Cheng Yuan
    Guoji Guo
    Genome Biology, 19
  • [2] Identification of cell heterogeneity by single-cell RNA-sequencing as a datadriven strategy for improving limbal stem cell differentiation from pluripotent stem cells
    Vattulainen, Meri Hilja Maria
    Smits, Jos
    Cunha, Dulce Lima
    Ilmarinen, Tanja
    Zhou, Huiqing
    Skottman, Heli
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [3] Normalization by distributional resampling of high throughput single-cell RNA-sequencing data
    Brown, Jared
    Ni, Zijian
    Mohanty, Chitrasen
    Bacher, Rhonda
    Kendziorski, Christina
    BIOINFORMATICS, 2021, 37 (22) : 4123 - 4128
  • [4] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [5] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    RESPIROLOGY, 2019, 24 (01) : 29 - 36
  • [6] Single-Cell RNA-Sequencing in Glioma
    Johnson, Eli
    Dickerson, Katherine L.
    Connolly, Ian D.
    Gephart, Melanie Hayden
    CURRENT ONCOLOGY REPORTS, 2018, 20 (05)
  • [7] Single-cell RNA-sequencing of the brain
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jia Qian
    CLINICAL AND TRANSLATIONAL MEDICINE, 2017, 6
  • [8] Sample multiplexing of peripheral immune populations for high throughput single-cell RNA-sequencing
    Bansal, Nidhanjali
    Chang, Christina
    Liang, Yuqiong
    Shum, Eleen Y.
    Martin, Jody C.
    Ghadiali, James
    Jensen, Devon
    Hu, Jing
    Rosenfeld, David
    Zheng, Ye
    Fan, H. Christina
    JOURNAL OF IMMUNOLOGY, 2018, 200 (01):
  • [9] High-throughput single-cell RNA sequencing
    Denyer, Tom
    Timmermans, Marja C. P.
    TRENDS IN PLANT SCIENCE, 2022, 27 (01) : 104 - 105
  • [10] Single-cell isolation by a modular single-cell pipette for RNA-sequencing
    Zhang, Kai
    Gao, Min
    Chong, Zechen
    Li, Ying
    Han, Xin
    Chen, Rui
    Qin, Lidong
    LAB ON A CHIP, 2016, 16 (24) : 4742 - 4748