Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings

被引:84
|
作者
Sarkar, S. [1 ]
Datta, S. [1 ]
Das, S. [1 ]
Basu, D. [1 ]
机构
[1] Cent Glass & Ceram Res Inst, Bio Ceram & Coating Div, Kolkata 700032, India
来源
SURFACE & COATINGS TECHNOLOGY | 2009年 / 203卷 / 13期
关键词
gamma-TiAl; Glass-ceramics; Coatings; Processing; Isothermal oxidation; HIGH-TEMPERATURE OXIDATION; BEHAVIOR; RESISTANCE; ALLOYS; AL; 900-DEGREES-C; IMPROVEMENT; AIR; CR; SI;
D O I
10.1016/j.surfcoat.2008.12.029
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
gamma-TiAl intermetallic alloys are presently considered an efficient structural material for advanced turbine blades and aero-engine components due to their various advantages compared to the traditionally used superalloys. However. their poor oxidation resistance at temperatures >750 degrees C severely limits their wider application. The present study dealt with the improvement of oxidation resistance of this alloy by applying impervious glass-ceramic coatings by vitreous enameling technique. Results showed that MgO-SiO2-TiO2 glass-ceramic coating could offer excellent oxidation resistance to gamma-TiAl at 800 degrees C even up to 100 h with negligible weight gain (similar to 0.10 mg/cm(2)) compared to that of the bare alloy (similar to 1.3 mg/cm(2)). The coatings those were belonging from BaO-MgO-SiO2, ZnO-Al2O3-SiO2 and BaO-SiO2 systems also extend appreciable improvement in the oxidation resistance of the alloy at 800 degrees C upto 100 h. At further higher temperature such as at 1000 degrees C, the ABK-13 and ABK-103 glass-ceramic coatings offered significant protection to the alloy up to 25 h of exposure in air with minimum weight gain (similar to 0.34 mg/cm(2)). However, after that the coated layers started to peel off from the alloy surface. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1797 / 1805
页数:9
相关论文
共 50 条
  • [21] Glass-ceramic oxidation protection of higher manganese silicide thermoelectrics
    Salvo, M.
    Smeacetto, F.
    D'Isanto, F.
    Viola, G.
    Demitri, P.
    Gucci, F.
    Reece, M. J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2019, 39 (01) : 66 - 71
  • [22] A KINETIC-MODEL OF LAMELLAR TRANSFORMATION IN GAMMA-TITANIUM ALUMINIDE ALLOY
    TIAN, HH
    HUANG, Z
    CHEN, CQ
    QIAN, ZQ
    SCRIPTA METALLURGICA ET MATERIALIA, 1994, 31 (10): : 1377 - 1380
  • [23] CHEMICAL COMPATIBILITY BETWEEN ZIRCONIA DISPERSION AND GAMMA-TITANIUM ALUMINIDE MATRIX
    GRUJICIC, M
    AROKIARAJ, S
    CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1993, 17 (02): : 133 - 140
  • [24] Forgeability and microstructure of gamma-titanium aluminide alloy deformation by hot torsion
    Ruppert, JM
    Chaze, AM
    Tschofen, J
    Martin, O
    Jacomet, S
    Fiorucci, G
    Perrin, MY
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P4): : 61 - 67
  • [25] THE OXIDATION BEHAVIOR OF ALUMINIDE COATINGS ON TITANIUM
    POIZE, S
    STREIFF, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1981, 293 (15): : 1057 - 1060
  • [26] MICROSTRUCTURE AND PROPERTIES OF A CREEP-RESISTANT, CAST GAMMA-TITANIUM ALUMINIDE
    BHOWAL, PR
    MERRICK, HF
    LARSEN, DE
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 192 : 685 - 690
  • [27] NOVEL PHASES IN THE OXIDATION OF GAMMA-TITANIUM ALUMINUM
    BEYE, RW
    GRONSKY, R
    ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04): : 1373 - 1381
  • [28] CYCLIC FATIGUE AND FRACTURE-BEHAVIOR OF A GAMMA-TITANIUM ALUMINIDE INTERMETALLIC
    SRIVATSAN, TS
    SOBOYEJO, WO
    STRANGWOOD, M
    ENGINEERING FRACTURE MECHANICS, 1995, 52 (01) : 107 - 120
  • [29] Durable Glass-Ceramic Coatings for Foam Glass
    Smeacetto, Federico
    Salvo, Milena
    Ventrella, Andrea
    Rizzo, Stefano
    Ferraris, Monica
    INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2012, 3 (01) : 69 - 74
  • [30] Glass-ceramic coatings based on organoyttroxanealumoxanesiloxanes
    Shcherbakova, G. I.
    Apukhtina, T. L.
    Varfolomeev, M. S.
    Sidorov, D. V.
    Drachev, A. I.
    Yurkov, G. Yu.
    INORGANIC MATERIALS, 2014, 50 (06) : 636 - 641