Nonparametric Local Pseudopotentials with Machine Learning: A Tin Pseudopotential Built Using Gaussian Process Regression

被引:10
|
作者
Luder, Johann [1 ,2 ]
Manzhos, Sergei [3 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Mat & Optoelect Sci, Kaohsiung, Taiwan
[2] Natl Sun Yat Sen Univ, Ctr Crystal Res, Kaohsiung, Taiwan
[3] Inst Natl Rech Sci, Ctr Energie Mat Telecommun, Varennes, PQ J3X 1S2, Canada
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 52期
关键词
DENSITY-FUNCTIONAL-THEORY; POLYETHYLENE TEREPHTHALATE; SEMICONDUCTORS; GE; NANOPARTICLES; DYNAMICS; OXIDE;
D O I
10.1021/acs.jpca.0c05723
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present novel nonparametric representation math for local pseudopotentials (PP) based on Gaussian Process Regression (GPR). Local pseudopotentials are needed for materials simulations using Orbital-Free Density Functional Theory (OF-DFT) to reduce computational cost and to allow kinetic energy functional (KEF application only to the valence density. Moreover, local PPs are important for the development of accurate KEFs for OF-DFT, but they are only available for a limited number of elements. We optimize local PPs of tin (Sn) represented with GPR to reproduce the experimental lattice constants of alpha- and beta-Sn and the energy difference between these two phases as well as their electronic structure and charge density distributions which are obtained with Kohn-Sham Density Functional Theory employing semilocal PPs. The use of a nonparametric GPR-based PP representation avoids difficulties associated with the use of parametrized functions and has the potential to construct an optimal local PP independent of prior assumptions. The GPR-based Sn local PP results in well-reproduced bulk properties of alpha- and beta-tin and electronic valence densities similar to those obtained with semilocal PP.
引用
收藏
页码:11111 / 11124
页数:14
相关论文
共 50 条
  • [21] On-line WSN SoC estimation using Gaussian Process Regression: An Adaptive Machine Learning Approach
    Ali, Omer
    Ishak, Mohamad Khairi
    Ahmed, Ashraf Bani
    Salleh, Mohd Fadzli Mohd
    Ooi, Chia Ai
    Khan, Muhammad Firdaus Akbar Jalaludin
    Khan, Imran
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9831 - 9848
  • [22] Path Loss Model Based on Machine Learning Using Multi-Dimensional Gaussian Process Regression
    Jang, Ki Joung
    Park, Sejun
    Kim, Junseok
    Yoon, Youngkeun
    Kim, Chung-Sup
    Chong, Young-Jun
    Hwang, Ganguk
    IEEE ACCESS, 2022, 10 : 115061 - 115073
  • [23] A novel correlation Gaussian process regression-based extreme learning machine
    Xuan Ye
    Yulin He
    Manjing Zhang
    Philippe Fournier-Viger
    Joshua Zhexue Huang
    Knowledge and Information Systems, 2023, 65 : 2017 - 2042
  • [24] Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine
    Bonakdari, Hossein
    Ebtehaj, Isa
    Samui, Pijush
    Gharabaghi, Bahram
    WATER RESOURCES MANAGEMENT, 2019, 33 (11) : 3965 - 3984
  • [25] Machine Learning With Gaussian Process Regression For Time-Varying Channel Estimation
    Simeon, Richard
    Kim, Taejoon
    Perrins, Erik
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3400 - 3405
  • [26] A novel correlation Gaussian process regression-based extreme learning machine
    Ye, Xuan
    He, Yulin
    Zhang, Manjing
    Fournier-Viger, Philippe
    Huang, Joshua Zhexue
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (05) : 2017 - 2042
  • [27] Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine
    Hossein Bonakdari
    Isa Ebtehaj
    Pijush Samui
    Bahram Gharabaghi
    Water Resources Management, 2019, 33 : 3965 - 3984
  • [28] Numerical continuation in nonlinear experiments using local Gaussian process regression
    L. Renson
    J. Sieber
    D. A. W. Barton
    A. D. Shaw
    S. A. Neild
    Nonlinear Dynamics, 2019, 98 : 2811 - 2826
  • [29] Nonstationary Gaussian Process Regression Using Point Estimates of Local Smoothness
    Plagemann, Christian
    Kersting, Kristian
    Burgard, Wolfram
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 204 - +
  • [30] Numerical continuation in nonlinear experiments using local Gaussian process regression
    Renson, L.
    Sieber, J.
    Barton, D. A. W.
    Shaw, A. D.
    Neild, S. A.
    NONLINEAR DYNAMICS, 2019, 98 (04) : 2811 - 2826