Clustering of gene expression data: Performance and similarity analysis

被引:0
|
作者
Yin, Longde [1 ]
Huang, Chun-Hsi [1 ]
机构
[1] Univ Connecticut, Dept Comp Sci & Engn, Storrs, CT 06269 USA
关键词
clustering algorithms; gene expression; microarray; cluster similarity analysis; performance study;
D O I
10.1109/IMSCCS.2006.43
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent advances of the DNA Microarray technology allow monitoring gene expression profiles of thousands of genes simultaneously. However, the analysis and handling of such fast growing data is becoming the major bottleneck in the utilization of the technology. Clustering analysis is one of the most effective methods for analyzing such gene expression data. In this paper we first experimentally study three major clustering algorithms: Hierarchical Clustering, Self-Organizing Map (SOM), and Self Organizing Tree Algorithm (SOTA), using Yeast Saccharomyces cerevisiae gene expression data, and compare their performance. Then, we present a data mining tool, Cluster Diff, which allows the similarity analysis of clusters generated by different algorithms. A case study is conducted based on clusters generated by SOTA and SOM.
引用
收藏
页码:142 / +
页数:3
相关论文
共 50 条
  • [41] Comparative analysis of clustering methods for gene expression time course data
    Costa, IG
    de Carvalho, FDT
    de Souto, MCP
    GENETICS AND MOLECULAR BIOLOGY, 2004, 27 (04) : 623 - 631
  • [42] Semi-supervised consensus clustering for gene expression data analysis
    Wang, Yunli
    Pan, Youlian
    BIODATA MINING, 2014, 7
  • [43] Combining Multiple Clustering and Network Analysis for Discoveries in Gene Expression Data
    Alhajj, Sleiman
    Alhajj, Aya
    Ozyer, Sibel Tariyan
    PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2021, 2021, : 502 - 509
  • [44] Multi-objective clustering ensemble for gene expression data analysis
    Faceli, Katti
    de Souto, Marcilio C. R.
    de Araujo, Daniel S. A.
    de Carvalho, Andre C. P. L. F.
    NEUROCOMPUTING, 2009, 72 (13-15) : 2763 - 2774
  • [45] Incorporating gene ontology in clustering gene expression data
    Kustra, Rafal
    Zagdanski, Adam
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 555 - +
  • [46] Problems in gene clustering based on gene expression data
    Bryan, J
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) : 44 - 66
  • [47] A modified correlation coefficient based similarity measure for clustering time-course gene expression data
    Son, Young Sook
    Baek, Jangsun
    PATTERN RECOGNITION LETTERS, 2008, 29 (03) : 232 - 242
  • [48] Spatial clustering based gene selection for gene expression analysis in microarray data classification
    Dhas, P. Edwin
    Lalitha, S.
    Govindaraj, Annalakshmi
    Jyoshna, B.
    AUTOMATIKA, 2024, 65 (01) : 152 - 158
  • [49] Clustering of time-course gene expression data using functional data analysis
    Song, Joon Jin
    Lee, Ho-Jin
    Morris, Jeffrey S.
    Kang, Sanghoon
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2007, 31 (04) : 265 - 274
  • [50] Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data
    Ruebel, Oliver
    Weber, Gunther H.
    Huang, Min-Yu
    Bethel, E. Wes
    Biggin, Mark D.
    Fowlkes, Charless C.
    Hendriks, Cris L. Luengo
    Keraenen, Soile V. E.
    Eisen, Michael B.
    Knowles, David W.
    Malik, Jitendra
    Hagen, Hans
    Hamann, Bernd
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (01) : 64 - 79