Semi-Supervised Multi-View Learning for Gene Network Reconstruction

被引:33
|
作者
Ceci, Michelangelo [1 ]
Pio, Gianvito [1 ]
Kuzmanovski, Vladimir [2 ,3 ]
Dzeroski, Saso [2 ,3 ]
机构
[1] Univ Bari Aldo Moro, Dept Comp Sci, I-70125 Bari, Italy
[2] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Ljubljana 1000, Slovenia
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
LARGE-SCALE ORGANIZATION; REGULATORY NETWORKS; EXPRESSION DATA; CLASSIFICATION; DISCOVERY; INFERENCE; VIEW;
D O I
10.1371/journal.pone.0144031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictions from multiple inference methods is more robust and shows high performance across diverse datasets. Inspired by this research, in this paper, we propose a machine learning solution which learns to combine predictions from multiple inference methods. While this approach adds additional complexity to the inference process, we expect it would also carry substantial benefits. These would come from the automatic adaptation to patterns on the outputs of individual inference methods, so that it is possible to identify regulatory interactions more reliably when these patterns occur. This article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm. The algorithm learns to combine the interactions predicted by many different inference methods in the multi-view learning setting. The empirical evaluation of the proposed algorithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cerevisiae) clearly shows improved performance over the state of the art methods. The results indicate that gene regulatory network reconstruction for the real datasets is more difficult for S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all the results are available for download at the following link: http://figshare.com/articles/ Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Trusted Semi-Supervised Multi-View Classification With Contrastive Learning
    Wang, Xiaoli
    Wang, Yongli
    Wang, Yupeng
    Huang, Anqi
    Liu, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8268 - 8278
  • [22] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    Cognitive Computation, 2023, 15 : 904 - 913
  • [23] Dynamically Weighted Multi-View Semi-Supervised Learning for CAPTCHA
    He, Congqing
    Peng, Li
    Le, Yuquan
    He, Jiawei
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT II, 2019, 11440 : 343 - 354
  • [24] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    INFORMATION, 2024, 15 (07)
  • [25] Multi-view Semi-supervised Learning for Web Image Annotation
    Hu, Mengqiu
    Yang, Yang
    Zhang, Hanwang
    Shen, Fumin
    Shao, Jie
    Zou, Fuhao
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 947 - 950
  • [26] Active Semi-Supervised Clustering based on Multi-View Learning
    Zhang, Xue
    Zhao, Dong-yan
    Wei, Shan
    Xiao, Wang-xin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 495 - +
  • [27] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    Ziraki, N.
    Bosaghzadeh, A.
    Dornaika, F.
    Ibrahim, Z.
    Barrena, N.
    COGNITIVE COMPUTATION, 2023, 15 (03) : 904 - 913
  • [28] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [29] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91
  • [30] Multi-view semi-supervised classification overview
    Jiang, Lekang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,