Semi-Supervised Multi-View Learning for Gene Network Reconstruction

被引:33
|
作者
Ceci, Michelangelo [1 ]
Pio, Gianvito [1 ]
Kuzmanovski, Vladimir [2 ,3 ]
Dzeroski, Saso [2 ,3 ]
机构
[1] Univ Bari Aldo Moro, Dept Comp Sci, I-70125 Bari, Italy
[2] Jozef Stefan Inst, Dept Knowledge Technol, Ljubljana 1000, Slovenia
[3] Jozef Stefan Int Postgrad Sch, Ljubljana 1000, Slovenia
来源
PLOS ONE | 2015年 / 10卷 / 12期
关键词
LARGE-SCALE ORGANIZATION; REGULATORY NETWORKS; EXPRESSION DATA; CLASSIFICATION; DISCOVERY; INFERENCE; VIEW;
D O I
10.1371/journal.pone.0144031
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictions from multiple inference methods is more robust and shows high performance across diverse datasets. Inspired by this research, in this paper, we propose a machine learning solution which learns to combine predictions from multiple inference methods. While this approach adds additional complexity to the inference process, we expect it would also carry substantial benefits. These would come from the automatic adaptation to patterns on the outputs of individual inference methods, so that it is possible to identify regulatory interactions more reliably when these patterns occur. This article demonstrates the benefits (in terms of accuracy of the reconstructed networks) of the proposed method, which exploits an iterative, semi-supervised ensemble-based algorithm. The algorithm learns to combine the interactions predicted by many different inference methods in the multi-view learning setting. The empirical evaluation of the proposed algorithm on a prokaryotic model organism (E. coli) and on a eukaryotic model organism (S. cerevisiae) clearly shows improved performance over the state of the art methods. The results indicate that gene regulatory network reconstruction for the real datasets is more difficult for S. cerevisiae than for E. coli. The software, all the datasets used in the experiments and all the results are available for download at the following link: http://figshare.com/articles/ Semi_supervised_Multi_View_Learning_for_Gene_Network_Reconstruction/1604827.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [2] Interpretable Graph Convolutional Network for Multi-View Semi-Supervised Learning
    Wu, Zhihao
    Lin, Xincan
    Lin, Zhenghong
    Chen, Zhaoliang
    Bai, Yang
    Wang, Shiping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8593 - 8606
  • [3] Multi-view Learning for Semi-supervised Sentiment Classification
    Su, Yan
    Li, Shoushan
    Ju, Shengfeng
    Zhou, Guodong
    Li, Xiaojun
    2012 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2012), 2012, : 13 - 16
  • [4] Multi-view semi-supervised learning for image classification
    Zhu, Songhao
    Sun, Xian
    Jin, Dongliang
    NEUROCOMPUTING, 2016, 208 : 136 - 142
  • [5] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [6] Fast Multi-View Semi-Supervised Learning With Learned Graph
    Zhang, Bin
    Qiang, Qianyao
    Wang, Fei
    Nie, Feiping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (01) : 286 - 299
  • [7] Multi-view semi-supervised learning with adaptive graph fusion
    Qiang, Qianyao
    Zhang, Bin
    Nie, Feiping
    Wang, Fei
    NEUROCOMPUTING, 2023, 557
  • [8] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [9] Visual Tracking via Multi-view Semi-supervised Learning
    Shang, Ziyu
    Lai, Mingzhu
    Ma, Bo
    2018 INTERNATIONAL CONFERENCE ON ALGORITHMS, COMPUTING AND ARTIFICIAL INTELLIGENCE (ACAI 2018), 2018,
  • [10] Semi-Supervised Multi-View Deep Discriminant Representation Learning
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Chen, Songcan
    Du, Bo
    Cai, Ziyun
    He, Zhenyu
    Yue, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2496 - 2509