Polarities, quasi-symmetric designs, and Hamada's conjecture

被引:28
|
作者
Jungnickel, Dieter [1 ]
Tonchev, Vladimir D. [2 ]
机构
[1] Univ Augsburg, Lehrstuhl Diskrete Math Optimierung & Operat Res, D-86135 Augsburg, Germany
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Polarity; Projective geometry; Design; Quasi-symmetric design; Hamada's conjecture; HADAMARD DESIGNS; AFFINE DESIGNS; GOOD BLOCKS; MATRICES; NUMBER; CODES;
D O I
10.1007/s10623-008-9249-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that every polarity of PG(2k - 1,q), where ka parts per thousand yen 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG (k) (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada's conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [21] Some recent advances on symmetric, quasi-symmetric and quasi-multiple designs
    Sane, S
    NUMBER THEORY AND DISCRETE MATHEMATICS, 2002, : 81 - 88
  • [22] Extension sets, affine designs, and Hamada's conjecture
    Jungnickel, Dieter
    Zhou, Yue
    Tonchev, Vladimir D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (03) : 587 - 610
  • [23] Extension sets, affine designs, and Hamada’s conjecture
    Dieter Jungnickel
    Yue Zhou
    Vladimir D. Tonchev
    Designs, Codes and Cryptography, 2018, 86 : 587 - 610
  • [24] A new upper bound on the parameters of quasi-symmetric designs
    Ghosh, Debashis
    Dey, Lakshmi Kanta
    INFORMATION PROCESSING LETTERS, 2013, 113 (12) : 444 - 446
  • [25] Non existence of triangle free quasi-symmetric designs
    Pawale, RM
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (02) : 347 - 353
  • [26] REGULAR SETS AND QUASI-SYMMETRIC 2-DESIGNS
    NEUMAIER, A
    LECTURE NOTES IN MATHEMATICS, 1982, 969 : 258 - 275
  • [27] Finite geometry designs, codes, and Hamada's conjecture
    Tonchev, Vladimir D.
    INFORMATION SECURITY, CODING THEORY AND RELATED COMBINATORICS: INFORMATION CODING AND COMBINATORICS, 2011, 29 : 437 - 448
  • [28] A Note on Triangle-Free Quasi-Symmetric Designs
    Pawale, Rajendra M.
    JOURNAL OF COMBINATORIAL DESIGNS, 2011, 19 (06) : 422 - 426
  • [29] Conditions for the parameters of the block graph of quasi-symmetric designs
    Pawale, Rajendra M.
    Shrikhande, Mohan S.
    Nyayate, Shubhada M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [30] Non Existence of Triangle Free Quasi-symmetric Designs
    Rajendra M. Pawale
    Designs, Codes and Cryptography, 2005, 37 : 347 - 353