Polarities, quasi-symmetric designs, and Hamada's conjecture

被引:28
|
作者
Jungnickel, Dieter [1 ]
Tonchev, Vladimir D. [2 ]
机构
[1] Univ Augsburg, Lehrstuhl Diskrete Math Optimierung & Operat Res, D-86135 Augsburg, Germany
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
关键词
Polarity; Projective geometry; Design; Quasi-symmetric design; Hamada's conjecture; HADAMARD DESIGNS; AFFINE DESIGNS; GOOD BLOCKS; MATRICES; NUMBER; CODES;
D O I
10.1007/s10623-008-9249-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that every polarity of PG(2k - 1,q), where ka parts per thousand yen 2, gives rise to a design with the same parameters and the same intersection numbers as, but not isomorphic to, PG (k) (2k,q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We also show that our construction provides an infinite family of counterexamples to Hamada's conjecture, for any field of prime order p. Previously, only a handful of counterexamples were known.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条