Polarization-sensitive optical properties of metallic and semiconducting nanowires

被引:1
|
作者
Ruda, Harry E. [1 ]
Shik, Alexander [1 ]
机构
[1] Univ Toronto, Ctr Adv Nanotechnol, Toronto, ON M5S 3E4, Canada
来源
关键词
nanowires; image forces; polarization; optical absorption; photoluminescence; core-shell structures;
D O I
10.1117/12.644698
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Polarization phenomena in the optical absorption and emission of metallic, semiconducting or composite nanowires are considered theoretically. Most nanowire-based structures are characterized by a dramatic difference in dielectric constant epsilon between the nanowire material and environment. Due to image forces caused by such E mismatch in nanowire structures, coefficients of their absorption and emission become essentially different for light polarized parallel or perpendicular to the nanowire axis. As a result, the intensity and spectra of absorption, luminescence, luminescence excitation, and photoconductivity in nanowires or arrays of parallel nanowires are strongly polarization-sensitive. In light-emitting nanowire core-shell structures, the re-distribution of a.c. electric field caused by the image forces may result in essential enhancing of core luminescence in frequency regions corresponding to luminescence from the semiconducting core or when the frequency of optical excitation coincides to the frequency of the plasmon resonance in the metallic shell. Random nanowire arrays acquire some properties typical for nematic liquid crystals. In such arrays, the effect described above may result in "polarization memory", where polarization of luminescence is determined by the polarization of the exciting light.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Polarization-sensitive quantum-optical coherence tomography
    Booth, MC
    Di Giuseppe, G
    Saleh, BEA
    Sergienko, AV
    Teich, MC
    PHYSICAL REVIEW A, 2004, 69 (04): : 043815 - 1
  • [22] Noise model for polarization-sensitive optical coherence tomography
    Williams, Paul A.
    Kemp, Nate J.
    Ives, David
    Park, Jesung
    Dwelle, Jordan C.
    Rylander, H. Grady, II
    Milner, Thomas E.
    COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE X, 2006, 6079
  • [23] Polarization-Sensitive Optical Coherence Tomography for Tissue Imaging
    Tang, Shuo
    Zhou, Xin
    2021 PHOTONICS NORTH (PN), 2021,
  • [24] Polarization-sensitive optical coherence tomography with a single input polarization state
    Villiger, Martin
    Xiong, Qiaozhou
    Wang, Nanshuo
    Liu, Xinyu
    Liu, Linbo
    Bouma, Brett E.
    2019 IEEE PHOTONICS CONFERENCE (IPC), 2019,
  • [25] Surface effects on thermoelectric properties of metallic and semiconducting nanowires
    Kojda, Danny
    Mitdank, Ruediger
    Weidemann, Stefan
    Mogilatenko, Anna
    Wang, Zhi
    Ruhhammer, Johannes
    Kroener, Michael
    Toellner, William
    Woias, Peter
    Nielsch, Kornelius
    Fischer, Saskia F.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (03): : 557 - 570
  • [26] Optical properties of metallic nanowires
    Boustimi, M
    Baudon, J
    Féron, P
    Robert, J
    OPTICS COMMUNICATIONS, 2003, 220 (4-6) : 377 - 381
  • [27] A method of calculating compensators in polarization-sensitive optical systems
    Gramatikov, Boris, I
    OPTIK, 2020, 201
  • [28] Detection of drusen by polarization-sensitive optical coherence tomography
    Schlanitz, F. G.
    Ahlers, C.
    Baumann, B.
    Spalek, T.
    Schriefl, S.
    Schuetze, C.
    Pircher, M.
    Goetzinger, E.
    Hitzenberger, C. K.
    Schmidt-Erfurth, U.
    ACTA OPHTHALMOLOGICA, 2010, 88 : 36 - 37
  • [29] Conical scan polarization-sensitive optical coherence tomography
    Lu, Zenghai
    Kasaragod, Deepa
    Matcher, Stephen J.
    BIOMEDICAL OPTICS EXPRESS, 2014, 5 (03): : 752 - 762
  • [30] Polarization-Sensitive Optical Coherence Tomography of Necrotizing Scleritis
    Miura, Masahiro
    Yamanari, Masahiro
    Iwasaki, Takuya
    Itoh, Masahide
    Yatagai, Toyohiko
    Yasuno, Yoshiaki
    OPHTHALMIC SURGERY LASERS & IMAGING, 2009, 40 (06) : 607 - 610