Radial Basis Functions for the image analysis of deformations

被引:0
|
作者
Biancolini, M. E. [1 ]
Salvini, P. [1 ]
机构
[1] Univ Roma Tor Vergata, Rome, Italy
关键词
DISPLACEMENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work we tested the reliability of Radial Basis Function theory (RBF) for the image analysis of deformations. RBF conformal transformation allows to map the original image onto the deformed one using only a few RBF centres to control the field. The backward transformation (i.e. with centres located at target positions and a displacement field that move them in the original positions) allows to obtain a deformed image from the original one using a few control points. A proper points' placement allows to generate a parametric morphed image that can carefully overlap the actual deformed one. Whilst the overall procedure consists in the minimisation of the matching error acting on the control parameters (i.e. unknown displacements at control points), in this study we have successfully verified the feasibility of the method feeding the image morpher with the actual displacements at RBF points.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [41] Wavelets, fractals, and radial basis functions
    Blu, T
    Unser, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 543 - 553
  • [42] Radial Basis Functions for Phase Unwrapping
    Villa Hernandez, Jesus
    de la Rosa Vargas, Ismael
    de la Rosa Miranda, Enrique
    [J]. COMPUTACION Y SISTEMAS, 2010, 14 (02): : 145 - 150
  • [43] Radial Basis Functions: a Bayesian treatment
    Barber, D
    Schottky, B
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 402 - 408
  • [44] Trefftz radial basis functions (TRBF)
    Kompis, V.
    Stiavnicky, M.
    Zmindak, M.
    Murcinkova, Z.
    [J]. PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 25 - 35
  • [45] Rapid evaluation of radial basis functions
    Roussos, G
    Baxter, BJC
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (01) : 51 - 70
  • [46] Gradient Descent and Radial Basis Functions
    Fernandez-Redondo, Mercedes
    Torres-Sospedra, Joaquin
    Hernandez-Espinosa, Carlos
    [J]. INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 391 - 396
  • [47] Smoothing and interpolation with radial basis functions
    Myers, DE
    [J]. BOUNDARY ELEMENT TECHNOLOGY XIII: INCORPORATING COMPUTATIONAL METHODS AND TESTING FOR ENGINEERING INTEGRITY, 1999, 2 : 365 - 374
  • [48] On unsymmetric collocation by radial basis functions
    Hon, YC
    Schaback, R
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2001, 119 (2-3) : 177 - 186
  • [49] Experiments on ensembles of radial basis functions
    Hernández-Espinosa, C
    Fernández-Redondo, M
    Torres-Sospedra, J
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2004, 2004, 3070 : 197 - 202
  • [50] Almost interpolation and radial basis functions
    Le Méhauté, A
    [J]. MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION, 2003, 145 : 203 - 214