Numerical solutions of time fractional Burgers' equation involving Atangana-Baleanu derivative via cubic B-spline functions

被引:26
|
作者
Shafiq, Madiha [1 ]
Abbas, Muhammad [1 ]
Abdullah, Farah Aini [2 ]
Majeed, Abdul [3 ]
Abdeljawad, Thabet [4 ,5 ]
Alqudah, Manar A. [6 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
[2] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[3] Univ Educ, Dept Math, Div Sci & Technol, Lahore 54770, Pakistan
[4] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[6] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Burgers' equation; Atangana-Baleanu fractional derivative; Spline interpolation; Cubic B-spline functions; Finite difference technique; Stability; Convergence; DIFFERENTIAL QUADRATURE METHOD; COLLOCATION METHOD; KERNEL;
D O I
10.1016/j.rinp.2022.105244
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current paper uses the cubic B-spline functions and -weighted scheme to achieve numerical solutions of the time fractional Burgers' equation with Atangana-Baleanu derivative. A non-singular kernel is involved in the Atangana-Baleanu fractional derivative. For discretization along temporal and spatial grids, the proposed numerical technique employs the finite difference approach and cubic B-spline functions, respectively. This scheme is unconditionally stable and second order convergent in spatial and temporal directions. The presented approach is endorsed by some numerical examples, which show that it is applicable and accurate.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Numerical solutions of advection diffusion equations involving Atangana-Baleanu time fractional derivative via cubic B-spline approximations
    Khan, Beenish
    Abbas, Muhammad
    Alzaidi, Ahmed S. M.
    Abdullah, Farah Aini
    Riaz, Muhammad Bilal
    [J]. RESULTS IN PHYSICS, 2022, 42
  • [2] Numerical solutions of Atangana-Baleanu time- fractional advection diffusion equation via an extended cubic B-spline technique
    Umer, Aqsa
    Abbas, Muhammad
    Shafiq, Madiha
    Abdullah, Farah Aini
    De la Sen, Manuel
    Abdeljawad, Thabet
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 74 : 285 - 300
  • [3] An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana-Baleanu derivative
    Shafiq, Madiha
    Abbas, Muhammad
    Abualnaja, Khadijah M.
    Huntul, M. J.
    Majeed, Abdul
    Nazir, Tahir
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 901 - 917
  • [4] Numerical solutions of generalized Atangana-Baleanu time-fractional FitzHugh-Nagumo equation using cubic B-spline functions
    Hayat, Afzaal Mubashir
    Abbas, Muhammad
    Abdullah, Farah Aini
    Nazir, Tahir
    Sidi, Hamed Ould
    Emadifar, Homan
    Alruwaili, Amani
    [J]. OPEN PHYSICS, 2024, 22 (01):
  • [5] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133
  • [6] An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana–Baleanu derivative
    Madiha Shafiq
    Muhammad Abbas
    Khadijah M. Abualnaja
    M. J. Huntul
    Abdul Majeed
    Tahir Nazir
    [J]. Engineering with Computers, 2022, 38 : 901 - 917
  • [7] Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana-Baleanu Derivative
    Alesemi, Meshari
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [8] Numerical approximation of inhomogeneous time fractional Burgers–Huxley equation with B-spline functions and Caputo derivative
    Abdul Majeed
    Mohsin Kamran
    Noreen Asghar
    Dumitru Baleanu
    [J]. Engineering with Computers, 2022, 38 : 885 - 900
  • [10] Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements
    Alaattin Esen
    Orkun Tasbozan
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 1325 - 1337