Numerical solutions of generalized Atangana-Baleanu time-fractional FitzHugh-Nagumo equation using cubic B-spline functions

被引:0
|
作者
Hayat, Afzaal Mubashir [2 ]
Abbas, Muhammad [2 ]
Abdullah, Farah Aini [3 ]
Nazir, Tahir [2 ]
Sidi, Hamed Ould [4 ]
Emadifar, Homan [5 ,6 ]
Alruwaili, Amani [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Phys, Ar Ar, Saudi Arabia
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
[3] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[4] Univ Nouakchott Al Aasriya, Fac Sci, Dept Math, Bp 6093, Nouakchott, Mauritania
[5] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamil Nadu, India
[6] Middle East Univ, MEU Res Unit, Amman, Jordan
来源
OPEN PHYSICS | 2024年 / 22卷 / 01期
关键词
computational physics; nonlinear time-fractional FitzHugh-Nagumo equation; Atangana-Baleanu fractional derivative; cubic B-spline functions; finite difference formulation; convergence and stability; TRANSMISSION; DIFFERENCE; MODELS;
D O I
10.1515/phys-2023-0120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalization of the classical FitzHugh-Nagumo model provides a more accurate description of the physical phenomena of neurons by incorporating both nonlinearity and fractional derivatives. In this article, we present a numerical method for solving the time-fractional FitzHugh-Nagumo equation (TFFNE) in the sense of the Atangana-Baleanu fractional derivative using B-spline functions. The proposed method employs a finite difference scheme to discretize the fractional derivative in time, while theta \theta -weighted scheme is used to discretize the space directions. The efficiency of the scheme is demonstrated through numerical results and rate of convergence. The convergence order and error norms are studied at different values of the noninteger parameter, temporal directions, and spatial directions. Finally, the effectiveness of the proposed methodology is examined through the analysis of three applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Numerical solutions of time fractional Burgers' equation involving Atangana-Baleanu derivative via cubic B-spline functions
    Shafiq, Madiha
    Abbas, Muhammad
    Abdullah, Farah Aini
    Majeed, Abdul
    Abdeljawad, Thabet
    Alqudah, Manar A.
    [J]. RESULTS IN PHYSICS, 2022, 34
  • [2] Numerical solutions of Atangana-Baleanu time- fractional advection diffusion equation via an extended cubic B-spline technique
    Umer, Aqsa
    Abbas, Muhammad
    Shafiq, Madiha
    Abdullah, Farah Aini
    De la Sen, Manuel
    Abdeljawad, Thabet
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 74 : 285 - 300
  • [3] An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana-Baleanu derivative
    Shafiq, Madiha
    Abbas, Muhammad
    Abualnaja, Khadijah M.
    Huntul, M. J.
    Majeed, Abdul
    Nazir, Tahir
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 901 - 917
  • [4] Exact Solutions of the Time-fractional Fitzhugh-Nagumo Equation
    Pandir, Yusuf
    Tandogan, Yusuf Ali
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1919 - 1922
  • [5] Numerical solutions of advection diffusion equations involving Atangana-Baleanu time fractional derivative via cubic B-spline approximations
    Khan, Beenish
    Abbas, Muhammad
    Alzaidi, Ahmed S. M.
    Abdullah, Farah Aini
    Riaz, Muhammad Bilal
    [J]. RESULTS IN PHYSICS, 2022, 42
  • [6] An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana–Baleanu derivative
    Madiha Shafiq
    Muhammad Abbas
    Khadijah M. Abualnaja
    M. J. Huntul
    Abdul Majeed
    Tahir Nazir
    [J]. Engineering with Computers, 2022, 38 : 901 - 917
  • [7] Radial Basis Functions Approximation Method for Time-Fractional FitzHugh-Nagumo Equation
    Alam, Mehboob
    Haq, Sirajul
    Ali, Ihteram
    Ebadi, M. J.
    Salahshour, Soheil
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [8] Numerical simulation of the nonlinear generalized time-fractional Klein-Gordon equation using cubic trigonometric B-spline functions
    Yaseen, Muhammad
    Abbas, Muhammad
    Ahmad, Bashir
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 901 - 916
  • [9] Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation
    Amin, Muhammad
    Abbas, Muhammad
    Baleanu, Dumitru
    Iqbal, Muhammad Kashif
    Riaz, Muhammad Bilal
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01): : 361 - 384
  • [10] Various Exact Solutions for the Conformable Time-Fractional Generalized Fitzhugh-Nagumo Equation with Time-Dependent Coefficients
    Injrou, Sami
    Karroum, Ramez
    Deeb, Nadia
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 2021