Properties of warm dense polystyrene plasmas along the principal Hugoniot

被引:44
|
作者
Hu, S. X. [1 ]
Boehly, T. R. [1 ]
Collins, L. A. [2 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
EQUATION-OF-STATE; INITIO MOLECULAR-DYNAMICS; HYDROGEN PLASMA; CONDUCTION; PLANETS;
D O I
10.1103/PhysRevE.89.063104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Polystyrene (CH) is often chosen as the ablator material for inertial confinement fusion (ICF) targets. Its static, dynamical, and optical properties in warm, dense conditions (due to shock compression) are important for ICF designs. Using the first-principles quantum molecular dynamics (QMD) method, we have investigated the equation of state (EOS) and optical reflectivity of shock-compressed CH up to an unprecedentedly high pressure of 62 Mbar along the principal Hugoniot. The QMD results are compared with existing experimental measurements as well as the SESAME EOS model. Although the Hugoniot pressure and/or temperature from QMD calculations agrees with experiments and the SESAME EOS model at low pressures below 10 Mbar, we have identified for the first time a stiffer behavior of shocked CH at higher pressures (>10 Mbar). Such a stiffer behavior of warm, dense CH can affect the ablation pressure (shock strength), shock coalescence dynamics, and nonuniformity growth in ICF implosions. In addition, we corrected the mistake made in literature for calculating the reflectivity of shocked CH and obtained good agreements with experimental measurements, which should lend credence to future opacity calculations in a first-principles fashion.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Measurement of the sound speed in dense fluid deuterium along the cryogenic liquid Hugoniot
    Fratanduono, D. E.
    Millot, M.
    Panella, A. Fernandez
    Sterne, P. A.
    Collins, G. W.
    Hicks, D. G.
    Eggert, J. H.
    Boehly, T. R.
    Celliers, P. M.
    PHYSICS OF PLASMAS, 2019, 26 (01)
  • [22] Optical Properties of Dense Plasmas
    Arkhipov, Yu. V.
    Dubovtsev, D. Yu.
    Syzganbayeva, S. A.
    Tkachenko, I. M.
    PLASMA PHYSICS REPORTS, 2020, 46 (01) : 71 - 76
  • [23] Optical Properties of Dense Plasmas
    Yu. V. Arkhipov
    D. Yu. Dubovtsev
    S. A. Syzganbayeva
    I. M. Tkachenko
    Plasma Physics Reports, 2020, 46 : 71 - 76
  • [24] Spectral properties of dense plasmas
    Fehr, R
    Kraeft, WD
    STRONGLY COUPLED COULOMB SYSTEMS, 1998, : 617 - 621
  • [25] Modeling density effects on electronic configurations in warm dense plasmas
    Faussurier, Gerald
    PHYSICS OF PLASMAS, 2023, 30 (04)
  • [26] Photoionization of C5+ ion in warm dense plasmas
    Zhao, G. P.
    Xie, L. Y.
    Liu, L.
    Wang, J. G.
    Janev, R. K.
    PHYSICS OF PLASMAS, 2018, 25 (08)
  • [27] The ion equation of state of plasmas in the warm dense matter regime
    Petrov, George M.
    Davidson, Asher D.
    AIP ADVANCES, 2023, 13 (03)
  • [28] Extreme ultraviolet interferometry of warm dense matter in laser plasmas
    Gartside, L. M. R.
    Tallents, G. J.
    Rossall, A. K.
    Wagenaars, E.
    Whittaker, D. S.
    Kozlova, M.
    Nejdl, J.
    Sawicka, M.
    Polan, J.
    Kalal, M.
    Rus, B.
    OPTICS LETTERS, 2010, 35 (22) : 3820 - 3822
  • [29] Ionization Potential Depression Model for Warm/Hot and Dense Plasmas
    Wu, Chensheng
    Zhou, Fuyang
    Yan, Jun
    Gao, Xiang
    Wu, Yong
    Zeng, Chunhua
    Wang, Jianguo
    CHINESE PHYSICS LETTERS, 2024, 41 (08)
  • [30] MD and FFM electron broadening for warm and dense hydrogen plasmas
    Ferri, S.
    Calisti, A.
    Mosse, C.
    Talin, B.
    Gonzalez, M. A.
    Gigosos, M. A.
    SPECTRAL LINE SHAPES, 2006, 874 : 142 - +