Resonant Tunnelling Diodes for next-generation THz systems

被引:0
|
作者
Baba, Razvan [1 ]
Jacobs, Kristof J. P. [2 ]
Stevens, Ben J. [3 ]
Harrison, Brett A. [4 ]
Watt, Adam P. [1 ]
Mukai, Toshikazu [5 ]
Hogg, Richard A. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow, Lanark, Scotland
[2] Univ Sheffield, Dept Elect & Elect Engn, Sheffield, S Yorkshire, England
[3] IQE Plc, IQE Photon, Cardiff, S Glam, Wales
[4] Univ Sheffield, Natl Epitaxy Facil, Sheffield, S Yorkshire, England
[5] ROHM Co Ltd, Mfg Div, Kyoto, Japan
关键词
resonant tunnelling diode; terahertz emitters; core technologies; semiconductor fabrication; non-destructive characterisation;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resonant tunnelling diodes (RTDs) are a strong candidate for future wireless communications in the THz spectrum (sub-millimetre waves), offering compact, room-temperature operation with the potential to exceed the bit transfer rate mandated by the 12G-SDI standard, using a single wireless link. A free-space RTD emitter operating at 353GHz is described. The fabrication process consists of a dual-pass I-line photolithography & etch technique using an air bridge, allowing low resistivity ohmic contacts, and accurate control of desired device area. With extrinsic circuit elements taken into account, the intrinsic semiconductor efficiency is analysed to investigate structural improvements for radiative efficiency. Such optimised structures are presented, and then characterised after being epitaxially grown with commercially viable metal-organic vapour phase epitaxy (MOVPE) reactors. A combination of low temperature photoluminescence spectroscopy, X-Ray diffractometry, and transmission electron microscopy attest the quality of the new material. We end with a suggestion for the next steps to exceed technological readiness levels of 8, and use monolithic RTD emitters as components in new systems.
引用
收藏
页码:94 / 97
页数:4
相关论文
共 50 条
  • [31] Next-Generation Sequencing Demands Next-Generation Phenotyping
    Hennekam, Raoul C. M.
    Biesecker, Leslie G.
    HUMAN MUTATION, 2012, 33 (05) : 884 - 886
  • [32] Next-generation sequencing for next-generation breeding, and more
    Tsai, Chung-Jui
    NEW PHYTOLOGIST, 2013, 198 (03) : 635 - 637
  • [33] Next generation continuous wave photomixing THz systems
    Goebel, T.
    Stanze, D.
    Dietz, R. J. B.
    Roehle, H.
    Schlak, M.
    Sartorius, B.
    Schell, M.
    2011 36TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2011,
  • [34] THz resonant-tunneling diodes
    Feiginov, Michael
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES XIII, 2020, 11390
  • [35] Next-generation sequencing of the next generation
    Darren J. Burgess
    Nature Reviews Genetics, 2011, 12 : 78 - 79
  • [36] Characterisation of degradation mechanisms in resonant tunnelling diodes
    Vogt, A.
    Brandt, M.
    Sigurdardottir, A.
    Schussler, M.
    Pena, D.
    Simon, A.
    Hartnagel, H.L.
    Rodewald, M.
    Roesner, M.
    Fuess, H.
    Goswami, S.N.N.
    Lal, K.
    Microelectronics Reliability, 1997, 37 (10-11): : 1691 - 1694
  • [37] Resonant tunnelling light-emitting diodes
    VanHoof, C
    Genoe, J
    Borghs, G
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1717): : 2447 - 2462
  • [38] Characterisation of degradation mechanisms in resonant tunnelling diodes
    Vogt, A
    Brandt, M
    Sigurdardottir, A
    Schussler, M
    Pena, D
    Simon, A
    Hartnagel, HL
    Rodewald, M
    Roesner, M
    Fuess, H
    Goswami, SNN
    Lal, K
    MICROELECTRONICS AND RELIABILITY, 1997, 37 (10-11): : 1691 - 1694
  • [39] Resonant tunnelling diodes for digital circuit applications
    Prost, W
    ASDAM '02, CONFERENCE PROCEEDINGS, 2002, : 115 - 124