Crystallization Behaviors and Regime Kinetics Analysis of Poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) Based Multiblock Thermoplastic Polyurethanes

被引:0
|
作者
Zhong, Qian [1 ,2 ]
机构
[1] Tongji Univ, Inst Bio & Nanomat, Dept Mat Sci & Engn, Shanghai 200092, Peoples R China
[2] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI 48202 USA
关键词
MULTIPLE MELTING BEHAVIOR; OXIDE) DIBLOCK COPOLYMER; L-LACTIC ACID; POLY(L-LACTIC ACID); POLY(LACTIC ACID); BLOCK-COPOLYMERS; ISOTHERMAL CRYSTALLIZATION; MECHANICAL-PROPERTIES; LAMELLAR MORPHOLOGY; THERMAL-ANALYSIS;
D O I
10.1134/S0965545X18030197
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(L-lactide)-based (PLLA) poly(ester-urethane)s are particularly relevant and gain significant attention due to their environment-friendly degradability and elastomeric shape memory capability. The tensile properties, resilience and degradation are strongly affected by their crystallization. This work was to investigate crystallization behaviors of the poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) (PLLA-PBAPLLA) based thermoplastic polyurethane elastomers (PLAEUs) we synthesized previously. Dynamic scanning calorimetry (DSC) and polarized optical microscopy (POM) in combination with Avrami, Jezioney and Hoffman-Weeks models were used to analyze the impact of the PLLA block length on the crystallization temperature T-c, degree of crystallinity X-c, nucleation and spherulite growth mode and crystallization regime kinetics of the PLAEUs. The results indicate the low melting point poly(butylene adipate) (PBA) block resides in the amorphous domains while the PLLA block resides in both crystalline and amorphous phases. The X-c of the PLAEUs increase with the increased length of the PLLA block (i.e. higher content of PLLA block). The analyses with Avrami and Jezioney models show the PLAEU copolymers follow a disc-like spherulite growth. The covalently bonded PBA block decreases both nucleation velocity and spherulite growth rate in the isothermal crystallization. Such an impact is lessened as PLLA block length increases. The PLLA homopolymers demonstrate crystallization regime transition from II to III at a certain T-c of isothermal crystallization, while the crystallization regime kinetics of PLLA block in the PLAEUs are explained by a single regime III at low molecular weights of PLLA and the transition is restored as the PLLA block length increases (i.e. regime II to III).
引用
收藏
页码:266 / 277
页数:12
相关论文
共 50 条
  • [41] Improvement in Crystallization and Toughness of Poly(L-lactide) by Melt Blending with Poly(L-lactide)-b-polyethylene glycol-b-poly(L-lactide) in the Presence of Chain Extender
    Wuttipong Yodthong Baimark
    Natcha Rungseesantivanon
    Polymer Science, Series A, 2021, 63 : S34 - S45
  • [42] Poly(L-lactide)/C60 nanocomposites:: Effect of C60 on crystallization of poly(L-lactide)
    Tsuji, Hideto
    Kawashima, Yoshio
    Takikawa, Hirofumi
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2007, 45 (16) : 2167 - 2176
  • [43] Synthesis of multifunctional poly(D,L-lactide)-poly(oxyethylene)-poly(D,L-lactide) triblock copolymers
    Dimitrov, Ivaylo V.
    Berlinova, Iliyana V.
    Michailova, Victoria I.
    POLYMER JOURNAL, 2013, 45 (04) : 457 - 461
  • [44] Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer
    F. Ravari
    A. Mashak
    M. Nekoomanesh
    H. Mobedi
    Polymer Bulletin, 2013, 70 : 2569 - 2586
  • [45] Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends
    Pei Xu
    Hao Guan Gui
    Shan Zhong Yang
    Yun Sheng Ding
    Qian Hao
    Macromolecular Research, 2014, 22 : 304 - 309
  • [46] Dielectric and conductivity properties of poly(L-lactide) and poly(L-lactide)/ionic liquid blends
    Xu, Pei
    Gui, Hao Guan
    Yang, Shan Zhong
    Ding, Yun Sheng
    Hao, Qian
    MACROMOLECULAR RESEARCH, 2014, 22 (03) : 304 - 309
  • [47] Miscibility and properties of linear poly(L-lactide)/branched poly(L-lactide) copolyester blends
    Zuideveld, Mihaela
    Gottschalk, Carsten
    Kropfinger, Heidi
    Thomann, Ralf
    Rusu, Mihai
    Frey, Holger
    POLYMER, 2006, 47 (11) : 3740 - 3746
  • [48] New superamolecular polymer micelles of α-cyclodextrin and poly(l-lactide), poly (l-lactide)/poly (ε-caprolactone) copolymer
    Du, Jiaojiao
    Dong, Haiqing
    Liao, Liqiong
    Liu, Lijian
    JOURNAL OF CONTROLLED RELEASE, 2011, 152 : E17 - E18
  • [49] Synthesis of multifunctional poly(D,L-lactide)-poly(oxyethylene)-poly(D,L-lactide) triblock copolymers
    Ivaylo V Dimitrov
    Iliyana V Berlinova
    Victoria I Michailova
    Polymer Journal, 2013, 45 : 457 - 461
  • [50] Synthesis and properties of poly(L-lactide)-polyether-poly(L-lactide) triblock copolymers
    Kim, Hye Young
    Kim, Sung Chul
    MACROMOLECULAR RESEARCH, 2011, 19 (05) : 448 - 452