Exactly solving a two-dimensional time-dependent coupled quantum oscillator

被引:5
|
作者
Xu, XW [1 ]
机构
[1] Yantai Teachers Univ, Dept Phys, Shandong 264025, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/33/12/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the generalized linear quantum transformation theory, we present a, new method to exactly solve a two-dimensional time-dependent coupled quantum oscillator, and obtain the exact formulae of the normal product form of the evolution operator, evolution matrix element, wavefunction and expectation value of an arbitrary observable.
引用
收藏
页码:2447 / 2452
页数:6
相关论文
共 50 条
  • [41] Spectroscopic properties of a two-dimensional time-dependent Cepheid model
    Vasilyev, V.
    Ludwig, H. -G.
    Freytag, B.
    Lemasle, B.
    Marconi, M.
    ASTRONOMY & ASTROPHYSICS, 2017, 606
  • [42] A TIME-DEPENDENT INTERFACE PROBLEM FOR TWO-DIMENSIONAL EDDY CURRENTS
    MACCAMY, RC
    SURI, M
    QUARTERLY OF APPLIED MATHEMATICS, 1987, 44 (04) : 675 - 690
  • [43] HOMOGENIZATION FOR TIME-DEPENDENT TWO-DIMENSIONAL INCOMPRESSIBLE GAUSSIAN FLOWS
    Carmona, Rene A.
    Xu, Lin
    ANNALS OF APPLIED PROBABILITY, 1997, 7 (01): : 265 - 279
  • [44] Time-dependent parabolic equations for two-dimensional acoustic waveguides
    Trofimov, MY
    TECHNICAL PHYSICS LETTERS, 2000, 26 (09) : 797 - 798
  • [45] Topology tracking for the visualization of time-dependent two-dimensional flows
    Tricoche, X
    Wischgoll, T
    Scheuermann, G
    Hagen, H
    COMPUTERS & GRAPHICS-UK, 2002, 26 (02): : 249 - 257
  • [46] TWO-DIMENSIONAL TIME-DEPENDENT MHD SIMULATION OF PLASMA ARMATURES
    HUERTA, MA
    BOYNTON, GC
    IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (01) : 238 - 242
  • [47] Sum rule of quantum uncertainties: coupled harmonic oscillator system with time-dependent parameters
    DaeKil Park
    Eylee Jung
    Quantum Information Processing, 2020, 19
  • [48] Sum rule of quantum uncertainties: coupled harmonic oscillator system with time-dependent parameters
    Park, DaeKil
    Jung, Eylee
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [49] Exactly solvable time-dependent models in quantum mechanics and their applications
    A. A. Suzko
    G. Giorgadze
    Physics of Particles and Nuclei, 2008, 39
  • [50] A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3