On the heat equation involving the Dirac δ distribution as a coefficient

被引:1
|
作者
Mitrovic, Darko [1 ]
机构
[1] Univ Montenegro, Fac Math, Podgorica 81000, Montenegro
关键词
Heat equation; Singular coefficients; Multiplication of distributions; CONSERVATION-LAWS;
D O I
10.1016/j.mcm.2009.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the equation (aH(x + st) + bH(-x - st) + delta(x + st)u(t)(x, t) = u(xx)(x, t), where (x, t) is an element of R X R+, a, b, s is an element of R are fixed constants, H is the Heaviside function, and delta is the Dirac distribution. We augment the equation with appropriate initial and boundary data. We give a physical model justifying such an equation, and introduce a new solution concept with the help of a distribution space defined on discontinuous test functions. We prove the existence and uniqueness of a solution in the framework of the proposed solution concept. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [41] Construction and convergence of difference schemes for a modell elliptic equation with Dirac-delta function coefficient
    Jovanovic, BS
    Kandilarov, JD
    Vulkov, LG
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 431 - 438
  • [42] Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation
    Choulli, Mourad
    Yamamoto, Masahiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3983 - 3998
  • [43] From Soft Dirac Monopoles to the Dirac Equation
    Faber, Manfried
    UNIVERSE, 2022, 8 (08)
  • [44] κ-DEFORMED DIRAC EQUATION
    Harikumar, E.
    Sivakumar, M.
    Srinivas, N.
    MODERN PHYSICS LETTERS A, 2011, 26 (15) : 1103 - 1115
  • [45] REPRESENTATIONS OF THE DIRAC EQUATION
    BOSE, SK
    GAMBA, A
    SUDARSHAN, ECG
    PHYSICAL REVIEW, 1959, 113 (06): : 1661 - 1663
  • [46] The conformal DIRAC equation
    Haantjes, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1941, 44 (1/5): : 324 - 332
  • [47] The modular Dirac equation
    Rugina, C.
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (10)
  • [48] On the Symplectic Dirac Equation
    Amorim, R. G. G.
    Ulhoa, S. C.
    Silva, Edilberto O.
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (06) : 664 - 672
  • [49] ALTERNATIVES TO DIRAC EQUATION
    GIRVIN, SM
    BROWNSTEIN, KR
    PHYSICAL REVIEW D, 1975, 12 (08) : 2337 - 2343
  • [50] ON THE SEPARABILITY OF DIRAC EQUATION
    TAKABAYASI, T
    PROGRESS OF THEORETICAL PHYSICS, 1953, 9 (06): : 681 - 683