On the heat equation involving the Dirac δ distribution as a coefficient

被引:1
|
作者
Mitrovic, Darko [1 ]
机构
[1] Univ Montenegro, Fac Math, Podgorica 81000, Montenegro
关键词
Heat equation; Singular coefficients; Multiplication of distributions; CONSERVATION-LAWS;
D O I
10.1016/j.mcm.2009.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the equation (aH(x + st) + bH(-x - st) + delta(x + st)u(t)(x, t) = u(xx)(x, t), where (x, t) is an element of R X R+, a, b, s is an element of R are fixed constants, H is the Heaviside function, and delta is the Dirac distribution. We augment the equation with appropriate initial and boundary data. We give a physical model justifying such an equation, and introduce a new solution concept with the help of a distribution space defined on discontinuous test functions. We prove the existence and uniqueness of a solution in the framework of the proposed solution concept. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [1] Weighted solution of the Dirac Beltrami equation with coefficient in VMO
    Cruz, Victor
    Marmolejo-Olea, Emilio
    Perez-Esteva, Salvador
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (06) : 747 - 760
  • [2] Weak solutions of semilinear elliptic equation involving Dirac mass
    Chen, Huyuan
    Felmer, Patricio
    Yang, Jianfu
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 729 - 750
  • [3] Approximation of the conductivity coefficient in the heat equation
    Dou, Fangfang
    Liu, Huan
    APPLICABLE ANALYSIS, 2015, 94 (05) : 999 - 1010
  • [4] The Heat Transfer Equation with an Unknown Heat Capacity Coefficient
    Kozhanov A.I.
    Journal of Applied and Industrial Mathematics, 2020, 14 (01) : 104 - 114
  • [5] Determination of an unknown coefficient in a nonlinear heat equation
    Wang, P
    Zheng, KW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (02) : 525 - 533
  • [6] On analytic solutions of the heat equation with an operator coefficient
    Vershynia A.
    Geftr S.
    Journal of Mathematical Sciences, 2009, 156 (5) : 799 - 812
  • [7] An inverse coefficient identification problem for the heat equation
    Lesnic, D
    Elliott, L
    Ingham, DB
    INVERSE PROBLEMS IN ENGINEERING MECHANICS, 1998, : 11 - 16
  • [8] On maps with given Jacobians involving the heat equation
    Avinyó, A
    Solà-Morales, J
    València, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (06): : 919 - 936
  • [9] On maps with given Jacobians involving the heat equation
    Albert Avinyó
    Joan Solà-Morales
    Marta València
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 : 919 - 936
  • [10] Determination of the heat transfer coefficient distribution
    Felczak, M.
    De Mey, G.
    Wiecek, B.
    13TH QUANTITATIVE INFRARED THERMOGRAPHY CONFERENCE, 2016, : 236 - 241