The hull and geodetic numbers of orientations of graphs

被引:4
|
作者
Hung, Jung-Ting [1 ]
Tong, Li-Da [1 ]
Wang, Hong-Tsu [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
关键词
Hull number; Geodetic number; Orientation; CONVEXITY;
D O I
10.1016/j.disc.2008.04.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an oriented graph D, let I-D[u, v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For S subset of V(D), let I-D[S] denote the union of all I-D[u, v] for all u, v is an element of S. Let [S](D) denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with I-D[S] = V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S](D) = V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(-)(G) = min{g(D) : D is an element of O(G)}, g(+) (G) = maxi{g(D) : D is an element of O(G)}, h(-)(G) = min{h(D) : D is an element of O(G)}, and h(+) (G) = max{h(D) : D is an element of O(G)}. By the above definitions, h(-) (G) <= g(-)(G) and h(+)(G) <= g(+) (G). In the paper, we prove that g-(G) < h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(-) (G) - h(-) (G) = a and g(+) (G) - h(+) (G) = b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2134 / 2139
页数:6
相关论文
共 50 条
  • [1] On the Steiner, geodetic and hull numbers of graphs
    Hernando, C
    Jiang, T
    Mora, M
    Pelayo, IM
    Seara, C
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 139 - 154
  • [2] Convexity, geodetic, and hull numbers of the join of graphs
    Canoy, Sergio R., Jr.
    Cagaanan, Gilbert B.
    Gervacio, Severino V.
    UTILITAS MATHEMATICA, 2006, 71 : 143 - 159
  • [3] Orientable convexity, geodetic and hull numbers in graphs
    Farrugia, A
    DISCRETE APPLIED MATHEMATICS, 2005, 148 (03) : 256 - 262
  • [4] On the geodetic and the hull numbers in strong product graphs
    Caceres, J.
    Hernando, C.
    Mora, M.
    Pelayo, I. M.
    Puertas, M. L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (11) : 3020 - 3031
  • [5] The forcing hull and forcing geodetic numbers of graphs
    Tong, Li-Da
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1159 - 1163
  • [6] Hull and Geodetic Numbers for Some Classes of Oriented Graphs
    Araujo, Julio
    Arraes, Pedro
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 77 - 88
  • [7] Hull and geodetic numbers for some classes of oriented graphs
    Araujo, J.
    Arraes, P. S. M.
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 14 - 27
  • [8] Computational and structural aspects of the geodetic and the hull numbers of shadow graphs
    Chandran, Ullas S., V
    Dourado, Mitre C.
    Thankachy, Maya G. S.
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 50 - 61
  • [9] Computational and structural aspects of the geodetic and the hull numbers of shadow graphs
    Chandran, S. V. Ullas
    Dourado, Mitre C.
    Thankachy, Maya G. S.
    DISCRETE APPLIED MATHEMATICS, 2022, 319 : 499 - 510
  • [10] GEODETIC ORIENTATIONS OF GRAPHS - PRELIMINARY REPORT
    ENTRINGE.RC
    GASSMAN, LD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A38 - A38