Parameter Estimation of 2D Multi-Component Polynomial Phase Signals: An Application to SAR Imaging of Moving Targets

被引:20
|
作者
Barbarossa, S. [1 ]
Di Lorenzo, P. [1 ]
Vecchiarelli, P. [1 ]
机构
[1] Univ Roma La Sapienza, Dept Informat Engn Elect & Telecommun, I-00184 Rome, Italy
关键词
Moving target imaging; polynomial-phase signals; synthetic aperture radar; SYNTHETIC-APERTURE RADAR; ORDER AMBIGUITY FUNCTION; STATISTICAL-ANALYSIS; FM SIGNALS; FREQUENCY; AMPLITUDE; ALGORITHM; PWVD;
D O I
10.1109/TSP.2014.2333553
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Polynomial-phase signals (PPS) appear in a variety of applications and several algorithms are available to estimate their parameters in the presence of noise. Among the available tools, the product high order ambiguity function (PHAF) has the merit of performing well in the presence of a superposition of PPS's. In this work, we generalize the PHAF to handle two-dimensional PPS's. Then we show an example of application motivating such an extension: the high resolution imaging of moving targets from synthetic aperture radars (SAR). Using the 2D-PHAF, we will propose an algorithm that compensates jointly for the range cell migration and the phase modulation induced by the relative radar-target motion in order to produce a focused image of the moving target. Numerical results illustrate the advantages of the proposed method when compared to existing auto-focusing algorithms.
引用
收藏
页码:4375 / 4389
页数:15
相关论文
共 50 条
  • [21] Fabrication of 2D arrays of multi-component nanoparticles
    Nikov, Ru G.
    Nedyalkov, N. N.
    Stankova, N. E.
    Atanasov, P. A.
    18TH INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES (VEIT2013), 2014, 514
  • [22] Method for Choosing Regularization Parameter in 2D SAR Imaging
    Zhu, Xiaoxiang
    Jin, Guanghu
    He, Feng
    Dong, Zhen
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 2080 - 2084
  • [23] Maximum likelihood based parameter estimation of stationary and non-stationary multi-component signals
    Semmelrodt, S
    FREQUENZ, 2004, 58 (1-2) : 20 - 24
  • [24] An estimation algorithm for 2-D polynomial phase signals
    Friedlander, B
    Francos, JM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (06) : 1084 - 1087
  • [25] Radar Imaging of Non-Uniformly Rotating Targets via a Novel Approach for Multi-Component AM-FM Signal Parameter Estimation
    Wang, Yong
    SENSORS, 2015, 15 (03): : 6905 - 6923
  • [26] SAR accelerating moving target parameter estimation and imaging based on three-order Local Polynomial Fourier Transform
    Zhou H.
    Zhao F.
    Yang J.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2016, 38 (04): : 919 - 926
  • [27] Parameter estimation of multi-component chirp signals based on discrete chirp Fourier transform and population Monte Carlo
    Peng Yang
    Zheng Liu
    Wen-Li Jiang
    Signal, Image and Video Processing, 2015, 9 : 1137 - 1149
  • [28] Parameter estimation of multi-component chirp signals based on discrete chirp Fourier transform and population Monte Carlo
    Yang, Peng
    Liu, Zheng
    Jiang, Wen-Li
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (05) : 1137 - 1149
  • [29] SAR Imaging using a Modem 2D Spectral Estimation Method
    Yadin, E.
    Olmar, D.
    Oron, O.
    Nathansohn, R.
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 1465 - 1470
  • [30] 2D Q-compensated multi-component elastic Gaussian beam migration
    Chao Chen
    Ji-Dong Yang
    Xin-Ru Mu
    Zhen-Chun Li
    Jian-Ping Huang
    Petroleum Science, 2023, 20 (01) : 230 - 240