THE APPLICATION OF ACTOR-CRITIC REINFORCEMENT LEARNING FOR FAB DISPATCHING SCHEDULING

被引:0
|
作者
Kim, Namyong [1 ]
Shin, IIayong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper applies Actor-Critic reinforcement learning to control lot dispatching scheduling in reentrant line manufacture model. To minimize the Work-In-Process(WIP) and Cycle Time(CT), the lot dispatching policy is directly optimized through Actor-Critic algorithm. The results show that the optimized dispatching policy yields smaller average WIP and CT than traditional dispatching policy such as Shortest Processing Time, Latest-Step-First-Served, and Least-Work-Next-Queue.
引用
收藏
页码:4570 / 4571
页数:2
相关论文
共 50 条
  • [21] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [22] Deep Actor-Critic Reinforcement Learning for Anomaly Detection
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [23] MARS: Malleable Actor-Critic Reinforcement Learning Scheduler
    Baheri, Betis
    Tronge, Jacob
    Fang, Bo
    Li, Ang
    Chaudhary, Vipin
    Guan, Qiang
    [J]. 2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [24] Averaged Soft Actor-Critic for Deep Reinforcement Learning
    Ding, Feng
    Ma, Guanfeng
    Chen, Zhikui
    Gao, Jing
    Li, Peng
    [J]. COMPLEXITY, 2021, 2021
  • [25] DAG-based workflows scheduling using Actor-Critic Deep Reinforcement Learning
    Koslovski, Guilherme Piegas
    Pereira, Kleiton
    Albuquerque, Paulo Roberto
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 150 : 354 - 363
  • [26] Forward Actor-Critic for Nonlinear Function Approximation in Reinforcement Learning
    Veeriah, Vivek
    van Seijen, Harm
    Sutton, Richard S.
    [J]. AAMAS'17: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2017, : 556 - 564
  • [27] An Actor-Critic Hierarchical Reinforcement Learning Model for Course Recommendation
    Liang, Kun
    Zhang, Guoqiang
    Guo, Jinhui
    Li, Wentao
    [J]. ELECTRONICS, 2023, 12 (24)
  • [28] ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR DYNAMIC MULTICHANNEL ACCESS
    Zhong, Chen
    Lu, Ziyang
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 599 - 603
  • [29] AN ACTOR-CRITIC REINFORCEMENT LEARNING APPROACH TO MINIMUM AGE OF INFORMATION SCHEDULING IN ENERGY HARVESTING NETWORKS
    Leng, Shiyang
    Yener, Aylin
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 8128 - 8132
  • [30] Dynamic Actor-critic: Reinforcement Learning based Radio Resource Scheduling For LTE-Advanced
    Tathe, Pallavi K.
    Sharma, Manish
    [J]. 2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,