Calculation of feedback gains for an optimal controller

被引:1
|
作者
Radisavljevic, V. [1 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
关键词
linear-quadratic regulator; Gaussian white noise stochastic disturbance; AIRCRAFT; ALGORITHM; DESIGN;
D O I
10.1243/09596518JSCE627
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a numerical algorithm for solving non-linear algebraic equations generated in an optimization problem in which the sum of a quadratic performance criterion and the H-2-norm, of the closed-loop transfer function from a Gaussian white noise stochastic disturbance to the state space variables of a linear time invariant system is minimized. The proposed algorithm is given in terms of algebraic Lyapunov equations. It is shown in this paper that this algorithm converges to the local minimum under non-restrictive, control theory and applications-oriented assumptions, stabilizability and detectability.
引用
收藏
页码:581 / 584
页数:4
相关论文
共 50 条
  • [31] Design of nonlinear optimal excitation controller with voltage feedback
    Yang, Wei
    Li, Ren-Dong
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2010, 38 (14): : 110 - 114
  • [32] Optimal and robust feedback controller estimation for a vibrating plate
    Fraanje, R
    Verhaegen, M
    Doelman, N
    Berkhoff, A
    CONTROL ENGINEERING PRACTICE, 2004, 12 (08) : 1017 - 1027
  • [33] Optimal PI Controller with Position Feedback for Vibration Suppression
    Fenik, Stefan
    Starek, Ladislav
    JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (13) : 2023 - 2034
  • [34] Optimal output feedback controller based on genetic algorithms
    Badran, SM
    Al-Duwaish, HN
    ELECTRIC POWER SYSTEMS RESEARCH, 1999, 50 (01) : 7 - 15
  • [35] LCToolbox: Facilitating Optimal Linear Feedback Controller Design
    Swevers, Jan
    Jacobs, Laurens
    Singh, Taranjitsingh
    Turk, Dora
    Verbandt, Maarten
    Pipeleers, Goele
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2020, 9 (02) : 109 - 116
  • [36] On the Optimal Controller for LTV Measurement Feedback Control Problem
    Ting GONGYu Feng LU School of Mathematical SciencesDalian University of TechnologyLiaoning PRChina
    数学研究与评论, 2011, 31 (03) : 393 - 401
  • [37] A nonlinear optimal feedback controller using neural networks
    He, SL
    Reif, K
    Unbehauen, R
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3818 - 3822
  • [38] Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains
    Lin, Fu
    Fardad, Makan
    Jovanovic, Mihailo R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (12) : 2918 - 2925
  • [39] ON DETERMINATION OF OPTIMAL CONSTANT OUTPUT FEEDBACK GAINS FOR LINEAR MULTIVARIABLE SYSTEMS
    LEVINE, WS
    ATHANS, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (01) : 44 - +
  • [40] Gradient flow approach to computing LQ optimal output feedback gains
    Yan, Wei-Yong
    Teo, Kok L.
    Moore, John B.
    Optimal Control Applications and Methods, 1994, 15 (01) : 67 - 75