Systems of Hydrodynamic Type that Approximate Two-Dimensional Ideal Fluid Equations

被引:2
|
作者
Dymnikov, V. P. [1 ]
Perezhogin, P. A. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
ideal fluid; equilibrium states; finite-dimensional approximations; Hamiltonian systems; turbulence; STATISTICAL-MECHANICS; EQUILIBRIUM STATES; FLOW;
D O I
10.1134/S0001433818030040
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Statistical properties of different finite-dimensional approximations of two-dimensional ideal fluid equations are studied. A special class of approximations introduced by A.M. Obukhov (systems of hydrodynamic type) is considered. Vorticity distributions over area and quasi-equilibrium coherent structures are studied. These coherent structures are compared to structures occurring in a viscous fluid with random forcing.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [21] Mathematical results related to a two-dimensional magneto-hydrodynamic equations
    Jiu, Quansen
    Niu, Dongjuan
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (04) : 744 - 756
  • [22] A New Hybrid Numerical Scheme for Two-Dimensional Ideal MHD Equations
    Zhou Yu-Fen
    Feng Xue-Shang
    CHINESE PHYSICS LETTERS, 2012, 29 (09)
  • [23] METHOD OF APPROXIMATE SOLUTION OF TWO-DIMENSIONAL EQUATIONS OF FOKKER-PLANK
    BULYCHEV, YG
    RADIOTEKHNIKA I ELEKTRONIKA, 1985, 30 (04): : 727 - 730
  • [24] APPROXIMATE INERTIAL MANIFOLDS FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1988, 306 (06): : 399 - 402
  • [25] Geometric Control of Universal Hydrodynamic Flow in a Two-Dimensional Electron Fluid
    Keser, Aydin Cem
    Wang, Daisy Q.
    Klochan, Oleh
    Ho, Derek Y. H.
    Tkachenko, Olga A.
    Tkachenko, Vitaly A.
    Culcer, Dimitrie
    Adam, Shaffique
    Farrer, Ian
    Ritchie, David A.
    Sushkov, Oleg P.
    Hamilton, Alexander R.
    PHYSICAL REVIEW X, 2021, 11 (03)
  • [26] Modeling of quasi-equilibrium states of a two-dimensional ideal fluid
    Perezhogin, P. A.
    Dymnikov, V. P.
    DOKLADY PHYSICS, 2017, 62 (05) : 248 - 252
  • [27] Energy balance for forced two-dimensional incompressible ideal fluid flow
    Lopes Filho, M. C.
    Nussenzveig Lopes, H. J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2219):
  • [28] Modeling of quasi-equilibrium states of a two-dimensional ideal fluid
    P. A. Perezhogin
    V. P. Dymnikov
    Doklady Physics, 2017, 62 : 248 - 252
  • [29] Hydrodynamic Navier-Stokes equations in two-dimensional systems with Rashba spin-orbit coupling
    Idrisov, Edvin G.
    Hasdeo, Eddwi H.
    Radhakrishnan, Byjesh N.
    Schmidt, Thomas L.
    LOW TEMPERATURE PHYSICS, 2023, 49 (12) : 1385 - 1397
  • [30] Hydrodynamic magnetotransport in two-dimensional electron systems with macroscopic obstacles
    Alekseev, P. S.
    Dmitriev, A. P.
    PHYSICAL REVIEW B, 2023, 108 (20)