Lidar Detection of Explosive Vapors in the Atmosphere

被引:18
|
作者
Bobrovnikov, S. M. [1 ,2 ]
Vorozhtsov, A. B. [1 ,3 ]
Gorlov, E. V. [1 ,2 ]
Zharkov, V. I. [2 ]
Maksimov, E. M. [4 ]
Panchenko, Yu. N. [5 ]
Sakovich, G. V. [3 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, Tomsk, Russia
[3] Russian Acad Sci, Inst Problems Chem & Energet Technol, Siberian Branch, Biisk, Russia
[4] Moscow Inst Phys & Technol, Moscow, Russia
[5] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
关键词
explosives; laser fragmentation; laser-induced fluorescence; lidar; LASER-INDUCED FLUORESCENCE; REMOTE DETECTION; UNIQUE SCHEME; PRESSURE;
D O I
10.1007/s11182-016-0635-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10-50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1a (TM) 10(-12) g/cm(-3) for the detection probability P = 97%.
引用
收藏
页码:1217 / 1225
页数:9
相关论文
共 50 条
  • [31] Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy
    Ramos, Christopher
    Dagdigian, Paul J.
    APPLIED OPTICS, 2007, 46 (04) : 620 - 627
  • [32] NO2 DETECTION IN THE ATMOSPHERE USING DIFFERENTIAL ABSORPTION LIDAR
    KONEFAL, Z
    SZCZEPANSKI, J
    HELDT, J
    ACTA PHYSICA POLONICA A, 1981, 60 (02) : 273 - 278
  • [33] Metal fluorescence lidar (light detection and ranging) and the middle atmosphere
    Arnold, KS
    She, CY
    CONTEMPORARY PHYSICS, 2003, 44 (01) : 35 - 49
  • [34] Clustering, saturated vapors, and the atmosphere
    Slanina, Z
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2003, 50 (3B) : 607 - 610
  • [35] Potentially explosive atmosphere?
    Cooper, B
    CHEMISTRY & INDUSTRY, 2000, (24) : 808 - 808
  • [36] Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots
    Wu, Zhaofeng
    Duan, Haiming
    Li, Zhijun
    Guo, Jixi
    Zhong, Furu
    Cao, Yali
    Jia, Dianzeng
    SENSORS, 2017, 17 (11)
  • [37] Uncertainty Evaluation on Temperature Detection of Middle Atmosphere by Rayleigh Lidar
    Li, Xinqi
    Zhong, Kai
    Zhang, Xianzhong
    Wu, Tong
    Zhang, Yijian
    Wang, Yu
    Li, Shijie
    Yan, Zhaoai
    Xu, Degang
    Yao, Jianquan
    REMOTE SENSING, 2023, 15 (14)
  • [38] The analysis and detection of explosive in atmosphere: development and test of sampling and concentration tools
    Bousquet, Marilyne
    Bry, Alain
    Eymard, Stephanie
    Frenois, Celine
    Genevray, Paul
    Hairault, Lionel
    Maillou, Thierry
    Nony, Solenne
    Noui, Julien
    Pin, Nicolas
    ACTUALITE CHIMIQUE, 2010, (342-43): : 70 - 74
  • [39] Detection and estimation of the column content of one or more vapors with a frequency-agile lidar
    Vanderbeek, RG
    Ben-David, A
    D'Amico, FM
    APPLICATIONS OF LIDAR TO CURRENT ATMOSPHERIC TOPICS III, 1999, 3757 : 103 - 112
  • [40] Improving the Detection of Explosive Hazards with LIDAR-Based Ground Plane Estimation
    Buck, A.
    Keller, J. M.
    Popescu, M.
    DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XXI, 2016, 9823