Lidar Detection of Explosive Vapors in the Atmosphere

被引:18
|
作者
Bobrovnikov, S. M. [1 ,2 ]
Vorozhtsov, A. B. [1 ,3 ]
Gorlov, E. V. [1 ,2 ]
Zharkov, V. I. [2 ]
Maksimov, E. M. [4 ]
Panchenko, Yu. N. [5 ]
Sakovich, G. V. [3 ]
机构
[1] Natl Res Tomsk State Univ, Tomsk, Russia
[2] Russian Acad Sci, VE Zuev Inst Atmospher Opt, Siberian Branch, Tomsk, Russia
[3] Russian Acad Sci, Inst Problems Chem & Energet Technol, Siberian Branch, Biisk, Russia
[4] Moscow Inst Phys & Technol, Moscow, Russia
[5] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
关键词
explosives; laser fragmentation; laser-induced fluorescence; lidar; LASER-INDUCED FLUORESCENCE; REMOTE DETECTION; UNIQUE SCHEME; PRESSURE;
D O I
10.1007/s11182-016-0635-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10-50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1a (TM) 10(-12) g/cm(-3) for the detection probability P = 97%.
引用
收藏
页码:1217 / 1225
页数:9
相关论文
共 50 条
  • [1] Lidar Detection of Explosive Vapors in the Atmosphere
    S. M. Bobrovnikov
    A. B. Vorozhtsov
    E. V. Gorlov
    V. I. Zharkov
    E. M. Maksimov
    Yu. N. Panchenko
    G. V. Sakovich
    Russian Physics Journal, 2016, 58 : 1217 - 1225
  • [2] LIDAR detector of explosive vapors
    Bobrovnikov, Sergey M.
    Gorlov, Evgeny V.
    Zharkov, Viktor I.
    Panchenko, Yury N.
    Puchikin, Aleksey V.
    Aksenov, Valery A.
    Kikhtenko, Andrey V.
    Tivileva, Maria I.
    22ND INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2016, 10035
  • [3] Lidar method for remote detection of vapors of explosives in the atmosphere
    Bobrovnikov S.M.
    Gorlov E.V.
    Atmospheric and Oceanic Optics, 2011, 24 (3) : 235 - 241
  • [4] LASER OPTOACOUSTIC DETECTION OF EXPLOSIVE VAPORS
    CLASPY, PC
    PAO, YH
    KWONG, S
    NODOV, E
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1975, 11 (09) : D37 - D37
  • [5] LASER OPTOACOUSTIC DETECTION OF EXPLOSIVE VAPORS
    CLASPY, PC
    PAO, YH
    KWONG, S
    NODOV, E
    APPLIED OPTICS, 1976, 15 (06): : 1506 - 1509
  • [6] Detection of explosive vapors: development and performances of a fluorescence sensor
    Caron, Thomas
    Clavaguera, Simon
    Huron, Maite
    Montmeat, Pierre
    Pasquinet, Eric
    Lere-Porte, Jean-Pierre
    Serein-Spirau, Francoise
    Perraut, Francois
    Prene, Philippe
    NOSE 2010: INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ODOUR MONITORING AND CONTROL, 2010, 23 : 25 - 30
  • [7] Fluorescence of aromatic amines and their fluorescamine derivatives for detection of explosive vapors
    Eastwood, Delyle
    Fernandez, Carlos
    Yoon, B. Yunghoon
    Sheaff, Chrystal N.
    Wai, Chien M.
    APPLIED SPECTROSCOPY, 2006, 60 (09) : 958 - 963
  • [8] Fiber waveguide chemical sensors for detection of explosive related vapors
    Carter, MT
    Thomas, RC
    Berton, ME
    DETECTION AND REMEDIATION TECHNOLOGIES FOR MINES AND MINELIKE TARGETS VII, PTS 1 AND 2, 2002, 4742 : 509 - 519
  • [9] Semiconducting Metal Oxides Nanocomposites for Enhanced Detection of Explosive Vapors
    Marchisio, Andrea
    Tulliani, Jean-Marc
    CERAMICS-SWITZERLAND, 2018, 1 (01): : 98 - 119
  • [10] Direct detection antenna-coupled mmW sensors for the detection of explosive vapors
    Gritz, Michael
    Hernandez, Rafael
    Gordon, Eli
    Larussi, Amedeo
    Zummo, Guy
    Boreman, Glenn
    Chen, Leonard
    PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY X, 2007, 6548