Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage

被引:381
|
作者
Sari, Ahmet [1 ]
Karaipekli, Ali [1 ]
机构
[1] Gaziosmanpasa Univ, Dept Chem, TR-60240 Tokat, Turkey
关键词
Palmitic acid; Expanded graphite; Form-stable PCM; Thermal energy storage; PHASE-CHANGE MATERIAL; HEAT-TRANSFER; FATTY-ACIDS; BLENDS; CONDUCTIVITY; ENHANCEMENT; PERFORMANCE; MATRIX;
D O I
10.1016/j.solmat.2008.11.057
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study is focused on the preparation and characterization of thermal properties and thermal reliability of palmitic acid (PA)/expanded graphite (EG) composite as form-stable phase change material (PCM). The maximum mass fraction of PA retained in EG was found as 80 wt% without the leakage of PA in melted state even when it is heated over the melting point of PA. Therefore, the PA/EG (80/20w/w%) composite was characterized as form-stable PCM. From differential scanning calorimetry (DSC) analysis, the melting and freezing temperatures and latent heats of the form-stable PCM were measured as 60.88 and 60.81 degrees C and 148.36 and 149.66 J/g, respectively. Thermal cycling test showed that the composite PCM has good thermal reliability although it was subjected to 3000 melting/freezing cycles. Fourier transformation infrared (FT-IR) spectroscopic investigation indicated that it has good chemical stability after thermal cycling. Thermal conductivities of PA/EG composites including different mass fractions of EG (5%, 10%, 15% and 20%) were also measured. Thermal conductivity of form-stable PA/EG (80/20w/w%) composite (0.60 W/mK) was found to be 2.5 times higher than that of pure PA (0.17 W/mK). Moreover, the increase in thermal conductivity of PA was confirmed by comparison of the melting and freezing times of pure PA with that of form-stable composite. Based oil all results, it was concluded that the form-stable PA/EG (80/20w/w%) has considerable latent heat energy storage potential because of its good thermal properties, thermal and chemical reliability and thermal conductivity. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:571 / 576
页数:6
相关论文
共 50 条
  • [41] Preparation and thermal properties of palmitic acid/polyaniline/copper nanowires form-stable phase change materials
    Fu-Rong Zhu
    Ling Zhang
    Ju-Lan Zeng
    Ling Zhu
    Zhen Zhu
    Xin-Yu Zhu
    Rui-Hua Li
    Zhong-Liang Xiao
    Zhong Cao
    Journal of Thermal Analysis and Calorimetry, 2014, 115 : 1133 - 1141
  • [42] Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage
    Mei, Dandan
    Zhang, Bing
    Liu, Ruichao
    Zhang, Yatao
    Liu, Jindun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) : 2772 - 2777
  • [43] Thermal performances of stearic acid/sepiolite composite form-stable phase change materials with improved thermal conductivity for thermal energy storage
    Yuxiang Hong
    Wentao Yan
    Juan Du
    Wenyu Li
    Tong Xu
    Wei-Biao Ye
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 3317 - 3329
  • [44] Thermal performances of stearic acid/sepiolite composite form-stable phase change materials with improved thermal conductivity for thermal energy storage
    Hong, Yuxiang
    Yan, Wentao
    Du, Juan
    Li, Wenyu
    Xu, Tong
    Ye, Wei-Biao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (05) : 3317 - 3329
  • [45] Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage
    Cai, Yibing
    Ke, Huizhen
    Lin, Liang
    Fei, Xiuzhu
    Wei, Qufu
    Song, Lei
    Hu, Yuan
    Fong, Hao
    ENERGY CONVERSION AND MANAGEMENT, 2012, 64 : 245 - 255
  • [46] Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material
    Sari, Ahmet
    Karaipekli, Ali
    Alkan, Cemil
    CHEMICAL ENGINEERING JOURNAL, 2009, 155 (03) : 899 - 904
  • [47] Preparation and thermal characterization of capric-myristic-palmitic acid/expanded graphite composite as phase change material for energy storage
    Yuan, Yaguang
    Yuan, Yanping
    Zhang, Nan
    Du, Yanxia
    Cao, Xiaoling
    MATERIALS LETTERS, 2014, 125 : 154 - 157
  • [48] Preparation and thermal properties of polyethylene glycol/expanded graphite as novel form-stable phase change material for indoor energy saving
    Yang, Yingni
    Pang, Yao
    Liu, Yi
    Guo, Hongwu
    MATERIALS LETTERS, 2018, 216 : 220 - 223
  • [49] A novel PCM of lauric-myristic-stearic acid/expanded graphite composite for thermal energy storage
    Liu, Cheng
    Yuan, Yanping
    Zhang, Nan
    Cao, Xiaoling
    Yang, Xiaojiao
    MATERIALS LETTERS, 2014, 120 : 43 - 46
  • [50] Preparation, characterization and thermal properties of Lauryl alcohol/Kaolin as novel form-stable composite phase change material for thermal energy storage in buildings
    Memon, Shazim Ali
    Lo, Tommy Yiu
    Shi, Xian
    Barbhuiya, Salim
    Cui, Hongzhi
    APPLIED THERMAL ENGINEERING, 2013, 59 (1-2) : 336 - 347