Urinary peptidomics identifies potential biomarkers for major depressive disorder

被引:35
|
作者
Wang, Ying [1 ,2 ,3 ]
Chen, Jianjun [2 ,3 ]
Chen, Liang [1 ,2 ,3 ]
Zheng, Peng [1 ,2 ,3 ]
Xu, Hong-Bo [1 ,2 ,3 ]
Lu, Jia [1 ,2 ,3 ]
Zhong, Jiaju [1 ,2 ,3 ]
Lei, Yang [1 ,2 ,3 ]
Zhou, Chanjuan [1 ,2 ,3 ]
Ma, Qingwei [4 ]
Li, Yan [4 ]
Xie, Peng [1 ,2 ,3 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Neurol, Chongqing 400016, Peoples R China
[2] Chongqing Key Lab Neurobiol, Chongqing, Peoples R China
[3] Chongqing Med Univ, Inst Neurosci, Chongqing 400016, Peoples R China
[4] Bioyong Beijing Technol Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Depression; MDD; Diagnosis; Diagnostic; Peptide pattern; Urine; PERFORMANCE-CHARACTERISTICS; PROTEOMIC ANALYSIS; PROTEIN; PLASMA; SERUM; DIAGNOSIS; DISCOVERY; FRAGMENT; BURDEN; BRAIN;
D O I
10.1016/j.psychres.2014.02.029
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Major depressive disorder (MDD) is a debilitating psychiatric illness with no available objective laboratory-based diagnostic test. In this study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based peptidomics was applied to identify potential urinary diagnostic biomarkers for MDD. A training set of 42 first-episode drug-naive MDD patients and 28 age- and gender-matched healthy controls (HC) was used to develop a peptide diagnostic pattern. Then, the diagnostic efficacy of this pattern was assessed in an independent blinded test set consisting of 24 MDD patients and 13 age- and gender-matched HC. A combination of five potential biomarkers was identified, yielding a sensitivity of 91.7% and specificity of 84.6% in the test set. Moreover, the protein precursors of four of the five peptides were identified by tandem mass spectrometric analysis: serum albumin, apolipoprotein A-I, protein AMBP, and basement membrane-specific heparan sulfate proteoglycan core protein. Taken together, the peptide pattern may be valuable for establishing an objective laboratory-based diagnostic test for MDD. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:25 / 33
页数:9
相关论文
共 50 条
  • [21] Major shrimp allergen peptidomics signatures and potential biomarkers of heat processing
    Xu, Li Li
    Gao, Hong Yan
    Yang, Fan
    Wen, Yun Qi
    Zhang, Hong Wei
    Lin, Hong
    Li, Zhen Xing
    Gasset, Maria
    FOOD CHEMISTRY, 2022, 382
  • [22] Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review
    Kim, Ka Young
    Shin, Ki Young
    Chang, Keun-A
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [23] Growth Factors as Biomarkers of Major Depressive Disorder and Potential Predictors of Antidepressant Drug Response
    Halaris, Angelos
    Clark-Raymond, Anne
    Meresh, Edwin
    Sharma, Aparna
    Kang, Robin
    Hage, Brandon
    Morrissey, Kathryn
    Fareed, Jawed
    Pandey, Ghanshyam
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S502 - S503
  • [24] Identification of Potential Biomarkers for Major Depressive Disorder: Based on Integrated Bioinformatics and Clinical Validation
    Zhong, Xiaogang
    Chen, Yue
    Chen, Weiyi
    Liu, Yiyun
    Gui, Siwen
    Pu, Juncai
    Wang, Dongfang
    He, Yong
    Chen, Xiang
    Chen, Xiaopeng
    Qiao, Renjie
    Xie, Peng
    MOLECULAR NEUROBIOLOGY, 2024, 61 (12) : 10355 - 10364
  • [25] A Systematic Review of Circulatory microRNAs in Major Depressive Disorder: Potential Biomarkers for Disease Prognosis
    Rasheed, Madiha
    Asghar, Rabia
    Firdoos, Sundas
    Ahmad, Nadeem
    Nazir, Amina
    Ullah, Kakar Mohib
    Li, Noumin
    Zhuang, Fengyuan
    Chen, Zixuan
    Deng, Yulin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (03)
  • [26] Tear fluid biomarkers in major depressive disorder: Potential of spectral methods in biomarker discovery
    Krajcikova, Kristina
    Semancikova, Erika
    Zakutanska, Katarina
    Kondrakhova, Daria
    Maslankova, Jana
    Stupak, Marek
    Talian, Ivan
    Tomasovicova, Natalia
    Kimakova, Tatiana
    Komanicky, Vladimir
    Dubayova, Katarina
    Breznoscakova, Dagmar
    Palova, Eva
    Semancik, Juraj
    Tomeckova, Vladimira
    JOURNAL OF PSYCHIATRIC RESEARCH, 2021, 138 : 75 - 82
  • [27] Biomarkers of Major Depressive Disorder: Knowing is Half the Battle
    Malik, Sahil
    Singh, Ravinder
    Arora, Govind
    Dangol, Akriti
    Goyal, Sanjay
    CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE, 2021, 19 (01) : 12 - 25
  • [28] Quantitative electroencephalographic biomarkers behind major depressive disorder
    Knocikova, Juliana A.
    Petrasek, Tomas
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [29] Advances in biosensors for major depressive disorder diagnostic biomarkers
    Dong, Tao
    Yu, Chenghui
    Mao, Qi
    Han, Feng
    Yang, Zhenwei
    Yang, Zhaochu
    Pires, Nuno
    Wei, Xueyong
    Jing, Weixuan
    Lin, Qijing
    Hu, Fei
    Hu, Xiao
    Zhao, Libo
    Jiang, Zhuangde
    BIOSENSORS & BIOELECTRONICS, 2024, 258
  • [30] Phonologically-based biomarkers for major depressive disorder
    Trevino, Andrea Carolina
    Quatieri, Thomas Francis
    Malyska, Nicolas
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,