Inferring transcriptional modules from ChIP-chip, motif and microarray data

被引:75
|
作者
Lemmens, Karen
Dhollander, Thomas
De Bie, Tijl
Monsieurs, Pieter
Engelen, Kristof
Smets, Bart
Winderickx, Joris
De Moor, Bart
Marchal, Kathleen
机构
[1] Katholieke Univ Leuven, BioI SCD, Dept Elect Engn, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Psychol, Res Grp Quantitat Psychol, B-3000 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Biol, Mol Physiol Plants & Microorganisms Sect, B-3001 Heverlee, Belgium
[4] Katholieke Univ Leuven, CMPG, Dept Microbial & Mol Syst, B-3001 Heverlee, Belgium
关键词
D O I
10.1186/gb-2006-7-5-r37
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
ReMoDiscovery' is an intuitive algorithm to correlate regulatory programs with regulators and corresponding motifs to a set of co-expressed genes. It exploits in a concurrent way three independent data sources: ChIP-chip data, motif information and gene expression profiles. When compared to published module discovery algorithms, ReMoDiscovery is fast and easily tunable. We evaluated our method on yeast data, where it was shown to generate biologically meaningful findings and allowed the prediction of potential novel roles of transcriptional regulators.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] NTAP: for NimbleGen tiling array ChIP-chip data analysis
    He, Kun
    Li, Xueyong
    Zhou, Junli
    Deng, Xing-Wang
    Zhao, Hongyu
    Luo, Jingchu
    [J]. BIOINFORMATICS, 2009, 25 (14) : 1838 - 1840
  • [32] Parameter estimation for robust HMM analysis of ChIP-chip data
    Peter Humburg
    David Bulger
    Glenn Stone
    [J]. BMC Bioinformatics, 9
  • [33] Quantitative Visualization of ChIP-chip Data by Using Linked Views
    Huang, Min-Yu
    Weber, Gunther H.
    Li, Xiao-Yong
    Biggin, Mark D.
    Hamann, Bernd
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 195 - 200
  • [34] Quantized correlation coefficient for measuring reproducibility of ChIP-chip data
    Shouyong Peng
    Mitzi I Kuroda
    Peter J Park
    [J]. BMC Bioinformatics, 11
  • [35] Bayesian modeling of ChIP-chip data using latent variables
    Mingqi Wu
    Faming Liang
    Yanan Tian
    [J]. BMC Bioinformatics, 10
  • [36] Bayesian modeling of ChIP-chip data using latent variables
    Wu, Mingqi
    Liang, Faming
    Tian, Yanan
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [37] Global and Threshold-Free Transcriptional Regulatory Networks Reconstruction Through Integrating ChIP-Chip and Expression Data
    Liu, Qi
    Yang, Yi
    Li, Yixue
    Zhang, Zili
    [J]. CURRENT PROTEIN & PEPTIDE SCIENCE, 2011, 12 (07) : 631 - 642
  • [38] ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
    Joshua WK Ho
    Eric Bishop
    Peter V Karchenko
    Nicolas Nègre
    Kevin P White
    Peter J Park
    [J]. BMC Genomics, 12
  • [39] Identifying cooperative transcription factors by combining ChIP-chip data and knockout data
    Yang, Yi
    Zhang, Zili
    Li, Yixue
    Zhu, Xin-Guang
    Liu, Qi
    [J]. CELL RESEARCH, 2010, 20 (11) : 1276 - 1278
  • [40] Identifying cooperative transcription factors by combining ChIP-chip data and knockout data
    Yi Yang
    Zili Zhang
    Yixue Li
    Xin-Guang Zhu
    Qi Liu
    [J]. Cell Research, 2010, 20 : 1276 - 1278