Effects of a Conducting Wall on Z-Pinch Stability

被引:7
|
作者
Knecht, Sean D. [1 ]
Lowrie, Weston [1 ]
Shumlak, Uri [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
Magnetohydrodynamics (MHD); wall stabilization; Z-pinch; SHEARED FLOW STABILIZATION; TEMPERATURE; PERFORMANCE;
D O I
10.1109/TPS.2014.2320923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stabilizing effect of a conducting wall on Z-pinch stability has been investigated through a systematic experimental and numerical study. Numerical simulations of a Z-pinch with a cylindrical conducting wall are compared with a case that modeled perforations in the conducting wall. The conducting wall also acts as the return current path for these investigations. Plasma conditions with various pinch sizes were studied numerically to better understand the effect of wall stabilization in Z-pinches. A study using the ZaP Flow Z-Pinch was performed by inserting a 0.35-m perforated section of electrode that has eight longitudinal slots cut from the outer electrode, reducing the conducting wall material by approximate to 70%. This modification prevents currents from flowing freely along the azimuthal distance of the outer electrode required to stabilize the m = 1, 2, 3 modes, which are experimentally monitored. Operating with identical experimental parameters with and without the perforated electrode was assumed to produce similar equilibrium and flow shear conditions in the pinch. Comparing the stability characteristics isolated the potential effects of the conducting wall. Magnetic data, interferometry, and optical images indicate that the conducting wall does not have a discernible effect on stability in the ZaP experiment. This result agrees with simulations with similar ratios of conducting wall radius to pinch radius.
引用
收藏
页码:1531 / 1543
页数:13
相关论文
共 50 条
  • [41] MHD STABILITY OF FREE-BOUNDARY TOROIDAL Z-PINCH
    SUGISAKI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (06) : 2005 - 2013
  • [42] IMPLOSIONS, EQUILIBRIA, AND STABILITY OF ROTATING, RADIATING Z-PINCH PLASMAS
    VELIKOVICH, AL
    DAVIS, J
    PHYSICS OF PLASMAS, 1995, 2 (12) : 4513 - 4520
  • [44] Fusion in a Staged Z-Pinch
    Wessel, Frank J.
    Hafiz-Ur-Rahman
    Ney, Paul
    Presura, Radu
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (08) : 2463 - 2468
  • [45] Fusion in a Staged Z-pinch
    H. U. Rahman
    P. Ney
    N. Rostoker
    F. J. Wessel
    Astrophysics and Space Science, 2009, 323 : 51 - 55
  • [46] POLARITY EFFECTS IN HIGH-PRESSURE Z-PINCH
    PRESTON, JM
    CURZON, FL
    APPLIED PHYSICS LETTERS, 1975, 26 (08) : 417 - 418
  • [47] Fusion in a Staged Z-pinch
    Rahman, H. U.
    Ney, P.
    Rostoker, N.
    Wessel, F. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2009, 323 (01) : 51 - 55
  • [48] α Heating in a Stagnated Z-pinch
    Appelbe, Brian
    Chittenden, Jeremy
    DENSE Z-PINCHES, 2009, 1088 : 21 - 24
  • [49] Lasers feel the Z-pinch
    Cuneo, ME
    PHYSICS WORLD, 2004, 17 (05) : 27 - 28
  • [50] Z-PINCH FUSION REACTOR
    HARTMAN, CW
    CARLSON, G
    CHENG, DY
    HOFFMAN, M
    WERNER, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 878 - 878