Modeling Free Surface Flows Using Stabilized Finite Element Method

被引:7
|
作者
Garg, Deepak [1 ]
Longo, Antonella [1 ]
Papale, Paolo [1 ]
机构
[1] Ist Nazl Geofis & Vulcanol, Sez Pisa, Via Uguccione della Faggiola 32, I-56126 Pisa, Italy
关键词
NAVIER-STOKES EQUATIONS; SPACE-TIME PROCEDURE; MOVING BOUNDARIES; NUMERICAL-SIMULATION; FRONT-TRACKING; RUN-UP; FLUID; MESH; COMPUTATIONS; FORMULATION;
D O I
10.1155/2018/6154251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work aims to develop a numerical wave tank for viscous and inviscid flows. The Navier-Stokes equations are solved by time-discontinuous stabilized space-time finite element method. The numerical scheme tracks the free surface location using fluid velocity. A segregated algorithm is proposed to iteratively couple the fluid flow and mesh deformation problems. The numerical scheme and the developed computer code are validated over three free surface problems: solitary wave propagation, the collision between two counter moving waves, and wave damping in a viscous fluid. The benchmark tests demonstrate that the numerical approach is effective and an attractive tool for simulating viscous and inviscid free surface flows.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Computations of multiphase flows with surface tension using an adaptive finite element method
    Dufour, S
    Pelletier, D
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2001, 40 (04) : 335 - 362
  • [42] Computational Techniques for Stabilized Edge-Based Finite Element Simulation of Nonlinear Free-Surface Flows
    Elias, Renato N.
    Goncalves, Milton A., Jr.
    Coutinho, Alvaro L. G. A.
    Esperanca, Paulo T. T.
    Martins, Marcos A. D.
    Ferreira, Marcos D. A. S.
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (04): : 1 - 7
  • [43] Parallel finite element computation of free-surface flows
    Güler, I
    Behr, M
    Tezduyar, T
    COMPUTATIONAL MECHANICS, 1999, 23 (02) : 117 - 123
  • [44] Parallel finite element computation of free-surface flows
    I. Güler
    M. Behr
    T. Tezduyar
    Computational Mechanics, 1999, 23 : 117 - 123
  • [45] Finite element numerical simulation of transient free surface flows
    Mnasri, Aida
    Taieb, Ezzeddine Hadj
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2019, (5-6): : 81 - 92
  • [46] A finite element model for free surface flows on fixed meshes
    Coppola-Owen, A. H.
    Codina, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (10) : 1151 - 1171
  • [47] A study of viscoelastic free surface flows by the finite element method: Hele-Shaw and slot coating flows
    Lee, AG
    Shaqfeh, ESG
    Khomami, B
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2002, 108 (1-3) : 327 - 362
  • [48] ANALYSIS OF NONSTEADY FLOW WITH A FREE SURFACE USING FINITE ELEMENT METHOD
    NEUMAN, SP
    WITHERSP.PA
    WATER RESOURCES RESEARCH, 1971, 7 (03) : 611 - &
  • [49] An adaptive stabilized trace finite element method for surface PDEs
    Heister, Timo
    Olshanskii, Maxim A.
    Yushutin, Vladimir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 171 : 164 - 174
  • [50] Finite element modeling of free surface particle clustering
    Neild, Adrian
    Gralinski, Ian
    Galtry, Cameron J.
    Rogers, Priscilla
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 2085 - 2088