In-Situ Monitoring and Modeling of Metal Additive Manufacturing Powder Bed Fusion

被引:10
|
作者
Alldredge, Jocob [1 ]
Slotwinski, John [1 ]
Storck, Steven [1 ]
Kim, Sam [1 ]
Goldberg, Arnold [1 ]
Montalbano, Timothy [1 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
关键词
D O I
10.1063/1.5031504
中图分类号
O59 [应用物理学];
学科分类号
摘要
One of the major challenges in metal additive manufacturing is developing in-situ sensing and feedback control capabilities to eliminate build errors and allow qualified part creation without the need for costly and destructive external testing. Previously, many groups have focused on high fidelity numerical modeling and true temperature thermal imaging systems. These approaches require large computational resources or costly hardware that requires complex calibration and are difficult to integrate into commercial systems. In addition, due to the rapid change in the state of the material as well as its surface properties, getting true temperature is complicated and difficult. Here, we describe a different approach where we implement a low cost thermal imaging solution allowing for relative temperature measurements sufficient for detecting unwanted process variability. We match this with a faster then real time qualitative model that allows the process to be rapidly modeled during the build. The hope is to combine these two, allowing for the detection of anomalies in real time, enabling corrective action to potentially be taken, or parts to be stopped immediately after the error, saving material and time. Here we describe our sensor setup, its costs and abilities. We also show the ability to detect in real time unwanted process deviations. We also show that the output of our high speed model agrees qualitatively with experimental results. These results lay the groundwork for our vision of an integrated feedback and control scheme that combines low cost, easy to use sensors and fast modeling for process deviation monitoring.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A review of powder deposition in additive manufacturing by powder bed fusion
    Avrampos, Panagiotis
    Vosniakos, George-Christopher
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 74 : 332 - 352
  • [32] In-situ porosity prediction in metal powder bed fusion additive manufacturing using spectral emissions: a prior-guided machine learning approach
    Atwya, Mohamed
    Panoutsos, George
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (06) : 2719 - 2742
  • [33] Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
    Sing, S. L.
    Yeong, W. Y.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (03) : 359 - 370
  • [34] Alternative Approach to Modeling of Nucleation and Remelting in Powder Bed Fusion Additive Manufacturing
    Koepf, Johannes A.
    Gotterbarm, Martin R.
    Kumara, Chamara
    Markl, Matthias
    Koerner, Carolin
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (12)
  • [35] In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion
    Mirzababaei, Saereh
    Ghayoor, Milad
    Doyle, Ryan P.
    Pasebani, Somayeh
    MATERIALS LETTERS, 2021, 284
  • [36] Measurement of powder bed density in powder bed fusion additive manufacturing processes
    Jacob, G.
    Donmez, A.
    Slotwinski, J.
    Moylan, S.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (11)
  • [37] Toward in-situ flaw detection in laser powder bed fusion additive manufacturing through layerwise imagery and machine learning
    Snow, Zackary
    Diehl, Brett
    Reutzel, Edward W.
    Nassar, Abdalla
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 59 : 12 - 26
  • [38] Powder bed fusion process in additive manufacturing: An overview
    Singh, Riya
    Gupta, Akash
    Tripathi, Ojestez
    Srivastava, Sashank
    Singh, Bharat
    Awasthi, Ankita
    Rajput, S. K.
    Sonia, Pankaj
    Singhal, Piyush
    Saxena, Kuldeep K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 3058 - 3070
  • [39] Additive manufacturing of glass with laser powder bed fusion
    Datsiou, Kyriaki Corinna
    Saleh, Ehab
    Spirrett, Fiona
    Goodridge, Ruth
    Ashcroft, Ian
    Eustice, Dave
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (08) : 4410 - 4414
  • [40] Review of Powder Bed Fusion Additive Manufacturing for Metals
    Ladani, Leila
    Sadeghilaridjani, Maryam
    METALS, 2021, 11 (09)