Active Multiple Kernel Fredholm Learning for Hyperspectral Images Classification

被引:0
|
作者
Saboori, Arash [1 ]
Ghassemian, Hassan [2 ]
Razzazi, Farbod [1 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Elect & Comp Engn, Tehran 1477893855, Iran
[2] Tarbiat Modares Univ, Fac Elect & Comp Engn, Image Proc & Informat Anal Lab, Tehran 1411713116, Iran
关键词
Kernel; Data models; Predictive models; Hyperspectral imaging; Noise measurement; Training; Active learning (AL); classification; domain adaptation (DA); Fredholm learning; hyperspectral images (HSIs); DOMAIN ADAPTATION;
D O I
10.1109/LGRS.2020.2969970
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Active learning (AL) represents an encouraging solution for hyperspectral image classification based on domain adaptation (DA) with very limited labeled samples in target domain. Although the traditional AL methods have exhibited the promising results in DA, some challenges still exist. On the one hand, the previous AL schemes assign a label to the most informative unlabeled data by user and, thus, are characterized by errors, time, and costs, which ignores dealing with noisy and complex data in target domain. On the other hand, the traditional AL methods based on kernel prediction model assume a predefined kernel and the identical distribution for source and target domains, which reduces the performance of classifier on target domain. To overcome these issues, we propose the Active Multiple Kernel Fredholm Learning (AMKFL), where a Fredholm kernel regularized model is presented to label the samples instead of the user, and then define two Fredholm integrals with multiple kernels to find an optimal kernel between different distributions, which increases the classification accuracy and generalization capabilities in noisy cases. The experimental results with two popular hyperspectral data sets show that the proposed AMKFL improves the classification accuracy significantly compared to the traditional methods while decreasing the user interaction.
引用
收藏
页码:356 / 360
页数:5
相关论文
共 50 条
  • [1] Classification of Hyperspectral Images with Multiple Kernel Extreme Learning Machine
    Ergul, Ugur
    Bilgin, Gokhan
    [J]. 2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [2] Multiple Kernel Learning for Representation-based Classification of Hyperspectral Images
    Qin, Yu
    Bian, Xiaoyong
    Sheng, Yuxia
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3507 - 3512
  • [3] Model Selection and Classification With Multiple Kernel Learning for Hyperspectral Images via Sparsity
    Gu, Yanfeng
    Gao, Guoming
    Zuo, Deshan
    You, Di
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2119 - 2130
  • [4] Active Deep Learning for Classification of Hyperspectral Images
    Liu, Peng
    Zhang, Hui
    Eom, Kie B.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (02) : 712 - 724
  • [5] A Kernel-Based Extreme Learning Machine Framework for Classification of Hyperspectral Images Using Active Learning
    Monoj K. Pradhan
    Sonajharia Minz
    Vimal K. Shrivastava
    [J]. Journal of the Indian Society of Remote Sensing, 2019, 47 : 1693 - 1705
  • [6] A Kernel-Based Extreme Learning Machine Framework for Classification of Hyperspectral Images Using Active Learning
    Pradhan, Monoj K.
    Minz, Sonajharia
    Shrivastava, Vimal K.
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (10) : 1693 - 1705
  • [7] A Framework of Multiple Kernel Ensemble Learning for Hyperspectral Classification
    Qi, Chengming
    Zhou, ZhangBing
    Hu, Lishuan
    Wang, Qun
    [J]. 2016 INT IEEE CONFERENCES ON UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING AND COMMUNICATIONS, CLOUD AND BIG DATA COMPUTING, INTERNET OF PEOPLE, AND SMART WORLD CONGRESS (UIC/ATC/SCALCOM/CBDCOM/IOP/SMARTWORLD), 2016, : 456 - 460
  • [8] Multiple Kernel Learning for Hyperspectral Image Classification: A Review
    Gu, Yanfeng
    Chanussot, Jocelyn
    Jia, Xiuping
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6547 - 6565
  • [9] MULTIPLE COMPOSITE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Du, Peijun
    Xia, Junshi
    Ghamisi, Pedram
    Iwasaki, Akira
    Benediktsson, Jon Atli
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2223 - 2226
  • [10] Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery
    Gu, Yanfeng
    Wang, Chen
    You, Di
    Zhang, Yuhang
    Wang, Shizhe
    Zhang, Ye
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07): : 2852 - 2865